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We discuss the appearance of long-range power-law correlations in various systems of
interest to condensed matter physicists and biophysicists, with emphasis on the recent
discovery of long-range correlations in DNA sequences that contain non-coding regions.

1. Introduction

For what basic physics advances will the twentieth century be remembered?
Certainly the first half will be known principally for the discovery of quantum
mechanics. The second half witnessed the developed of a myriad of applica-
tions of quantum mechanics, without which much of everyday life would not be
recognizable. But what are the basic advances in fundamental understanding of
the workings of nature?

Here, we shall exemplify one such basic advance — the discovery of long-
range power-law correlations in a remarkably wide variety of systems. Such
long-range power-law correlations are a physical fact that in turn gives rise to
the increasingly appreciated “fractal geometry of nature” [1-6]. So if fractals
are indeed so widespread, it makes sense to anticipate that long-range power-
law correlations may be similarly widespread. Indeed, recognizing the ubiquity
of long-range power-law correlations can help us in our efforts to understand
nature, since as soon as we find power-law correlations we can quantity these
with a critical exponent (called « in this paper). Quantification of different
behavior allows us to recognize similarities between different systems, thereby
eventually leading to recognizing underlying unifications that might otherwise
have gone unnoticed. For example, as soon as phenomena occurring near
critical points were quantified with critical exponents, it was recognized that
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the entire “zoo’” of critical phenomena partitioned itself neatly into a relatively
small number of distinct “universality classes”.

Our intuition tells us that correlations should decay exponentially, not as
power laws. Consider, e.g., a set of two-state Ising spins in dimension one
(d =1) with interactions J between neighbors. If C, denotes the correlation
function for two spins that are nearest neighbors, then intuition tells us that the
correlation function for any two spins separated by a distance r is {7]

C.=(C)=e"%, (1a)

where the second equality in (la) serves to define the correlation length

=—1/log C,.

For d = 1 site percolation, C, denotes the pair connectedness, the probability
that a site at position r is both occupied and also connected by a string of
occupied sites to an occupied site at the origin [8]. Again, (1a) holds, but now
with C, = p, the probability that a site is occupied.

Our simple intuition, that correlations decay exponentially because of the
fashion in which order is “propagated”, seems to always work — except at the
critical point, where the exponential decay of (1a) gives over to a power law
decay

C,~(1/r)7 (1b)

The difference between (1a) and (1b) is profound: (1a) states that there is a
characteristic length ¢ fixed by the strength of the nearest- neighbor correlation
Cl: while ( \u;) states that there is no characteristic 1 leugul at all.

Can we intuitively understand how it is possible to find a non-exponential
decay of correlations? At first sight, it might appear that whenever we
increment the distance between two spins by one lattice constant, the

correlation should decrease by roughly the same factor, but this intuition leads
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from the fact that near a critical point, “information” propagates from a spin at
the origin to a spin at position r not via a single path (as for d = 1), but rather
via an infinite number of paths; some of these paths are explicitly enumerated
in fig. 9.4 of ref. [7]. Ornstein and Zernike [9] recognized this fact, but

annrnvtmnfgd the fashion in which “order is nropagated” and so obtained
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predictions that today we call “classical” (fig. 7.5 of ref. [7]). Exact enumera-
tion methods, such as high-temperature series expansions, take into account
exactly such paths up to a certain length &, , where k___ is typically 20. To
obtain power-law correlations, the exact results for k <20 are extrapolated to
obtain an estimate of the behavior for all k. In some sense, although the

correlation along each path decreases exponentially with the length of the path,
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the number of such path increases exponentially. Therefore, the net effect is
that there arise longer range power-law correlations.

At one time, it was imagined that the “scale-free” case of (1b) was relevant
to only a fairly narrow slice of physical phenomena — only to systems that had
been ‘“‘tuned” by exceedingly painstaking experimental work to be exactly at a
critical point [7]. Now we appreciate the ubiquity of systems displaying
scale-invariant behavior. First of all, any system examined on length scales
smaller than the correlation length is likely to display power-law behavior
(because all paths between the origin and r are relevant up to the correlation
length, and these cancel out the exponential decay for r <§). Moreover, the
number and nature of systems displaying power-law correlations has increased
dramatically, including systems that no one might ever have suspected as
falling under the umbrella of “critical phenomena”. The latter part of the
century has witnessed a veritable expulsion in the study, both experimental and
theoretical, of such systems. The 1991 Nobel Prize was awarded to P.-G. de
Gennes in part for his recognition that polymer systems behave analogously to
systems near their critical points. The 1993 Wolf Prize will be awarded to
Benoit Mandelbrot for the recognition of the “fractal geometry of nature”.
Another very prestigious Israeli prize, the 1993 Israel Prize, is being awarded
this year to Shlomo Alexander, in large part for his discoveries that under
appropriate conditions a wide range of systems obey scaling or scale in-
variance.

Indeed, many systems drive themselves spontaneously toward critical points.
One of the simplest systems exhibiting such “self-organized criticality” [10] is
invasion percolation, a generic model that has recently found applicability to
describing anomalous behavior of rough interfaces [11]. Instead of occupying
all sites with random numbers below a pre-set parameter p, in invasion
percolation one “grows” the incipient infinite cluster right at the percolation
threshold by the trick of occupying always the perimeter site whose random
number is smallest. Thus small clusters are certainly not scale-invariant and in
fact contain sites with a wide distribution of random numbers. As the mass of
the clusters increases, the cluster becomes closer and closer to being scale
invariant or “fractal”, One says that such a system drives itself to a “self-
organized critical state’ [10].

The list of systems in which power law correlations appear has grown rapidly
in recent years, including models of turbulence and even earthquakes [12].
What do we anticipate for biological systems? Generally speaking, when
“entropy wins over energy” —i.e., randomness dominates the behavior — we
find power laws and scale invariance. Biological systems sometimes are
described in language that makes one think of a Swiss watch. Mechanistic or
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“Rube Goldberg” descriptions must in some sense be incomplete, since it is
only some appropriately chosen averages that appear to behave in a regular
fashion. The trajectory of each individual biological molecule is of necessity
random - albeit correlated. Thus one might hope that recent advances in
understanding “‘correlated randomness” [13—16] could be relevant to biological
phenomena. While there have been reports of scale invariant phenomena in
isolated biological systems — ranging from the fractal shapes of neurons [17] to
long-range correlations in heart beat intervals [18], human writings [19], and
the stock market [20] - there has been no systematic study of biological system
that displays power-law correlations.

Here we will attempt to summarize the key findings of some recent work
[21-40] suggesting that under suitable conditions — the sequence of base pairs
or “nucleotides” in DNA also displays power-law correlations. The underlying
basis of such power-law correlations is not understood at present, but it is least
possible that this reason is of as fundamental importance as it is in other
systems in nature that have been found to display power-law correlations.

2. Discovery of long-range correlations in DNA

In order to study the scale-invariant long-range correlations of a DNA
sequence, we first introduced a graphical representation of DNA sequences,
which we term a fractal landscape or DNA walk [21]. For the conventional
one-dimensional random walk model [41], a walker moves either “up” [u(i) =
+1] or “down” [u(i) = —1] one unit length for each step i of the walk [1]. For
the case of an uncorrelated walk, the direction of each step is independent of
the previous steps. For the case of a correlated random walk, the direction of
each step depends on the history (“‘memory”) of the walker [14-16].

One definition of the DNA walk is that the walker steps “up” [u(i} = +1] if a
pyrimidine (C or T) occurs at position a linear distance i along the DNA chain,
while the walker steps “down” [u(i) = —1] if a purine (A or G) occurs at
position i. Other definitions are discussed in the caption to fig. 7. The question
we asked was whether such a walk displays only short-range correlations (as in
an n-step Markov chain) or long-range correlations (as in critical phenomena

and other scale-free “fractal” phenomena).

The DNA walk provides a graphical representation for each gene and
permits the degree of correlation in the base pair sequence to be directly
visualized, as in fig. 1. Fig. 1 naturally motivates a quantification of this
correlation by calculating the “net displacement” of the walker after / steps,

which is the sum of the unit steps u(i) for each step i. Thus y(!)=X'_, u(i).
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Fig. 1. The DNA walk representations of (top) human B-cardiac myosin heavy chain gene
sequence, showing the coding regions as vertical dark bars, (middle) the spliced together coding
regions, and (bottom) the bacteriophage lambda DNA which contains only coding regions. Note
the more complex fluctuations for (top) compared with the coding sequences (middle) and
(bottom). We found that for almost all coding sequences studied that there appear regions with one
strand bias, followed by regions of a different strand bias. The fluctuation on either side of the
overall strand bias we found to be random, a fact that is plausible by visual inspection of the DNA
walk representations. We used different step heights for purine and pyrimide in order to align the
end point with the starting point. This procedure is for graphical display purposes only {to allow
one to visualize the fluctuations more easily) and is not used in any analytic calculations.

An important statistical quantity characterizing any walk [41] is the root
mean square fluctuation F(/) about the average of the displacement; F(I) is
defined in terms of the difference between the average of the square and the
square of the average,

F2(1) =[ay() —Ay(D))* =[ay()]* —Ay ()", (2)



H.E. Stanley et al. | Long-range power-law correlations 9

of a quantity Ay(l) defined by Ay(l) =y(l, +!) — y(l,). Here the bars indicate
an average over all positions [, in the gene. Operationally, this is equivalent to
(a) taking a set of calipers set for a fixed distance /, (b) moving the beginning
point sequentially from [,=1 to [,=2,... and (¢) calculating the quantity
Ay(l) (and its square) for each value of /,, and (d) averaging all of the
calculated quantities to obtain F*(/).

The mean square fluctuation is related to the auto-correlation function
() =ully) u(ly + 1) —u(l,)’ through the relation: F’(l)=ZX!_, E!_, C(j—i).
The calculation of F(/) can distinguish three possible types of behavior. (i) If
the base pair sequence were random, then C(/) would be zero on average
[except C(0) = 1], so F(I)~!'"* (as expected for a normal random walk). (ii) If
there were a local correlation extending up to a characteristic range R (such as
in Markov chains), then C(/) ~ exp(—//R); nonetheless the asymptotic behavior
F(I) ~1""* would be unchanged from the purely random case. (iii) If there is no
characteristic length (i.e., if the correlation were “infinite-range”), then the
scaling property of C(/) would not be exponential, but would most likely to be
a power-law function, and the fluctuations will also be described by a power
law

F(l)~1" (22)

with a # 1/2. Fig 1(top) shows a typical example of a gene that contains a
significant fraction of base pairs that do not code for amino acids [42-44]. It is
immediately apparent that the DNA walk has an extremely jagged contour,
which we shall see corresponds to long-range correlations. Fig. 2 shows double
logarithmic plots of the mean square fluctuation function F(/) as a function of
the linear distance / along the DNA chain for the three randomly chosen
sub-sequences (1000 base pairs of each) from fig. 1(top).

The fact that the data are linear on this double logarithmic plot confirms that
F(I) ~I". A least-squares fit produces a straight line with slope a substantially
larger than the prediction for an uncorrelated walk, @ =1/2, thus providing
direct experimental evidence for the result that there exists long-range
correlation.

Peng et al. also addressed the question of whether the long-range correlation
properties are different for coding and non-coding regions of a DNA sequence
[21], a point that is currently the subject of some continuing debate [24,28].
Fig. 1{middle) shows the DNA walk for a sequence formed by splicing together
the coding regions of the DNA sequence of this same gene. Fig. 1(bottom)
displays the DNA walk for a typical sequence with only coding regions. In
contrast to fig. 1(top), these coding sequences have less jagged contours,

””” Yoo

suggesting a shorter-range correlation.
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Fig. 2. Double logarithmic plots of the mean square fluctuation function F(/) as a function of the
linear distance ! along the DNA chain for three randomly chosen sub-sequences (1000 base pairs of
each) from fig. la. The dashed line has slope 0.5, corresponding to the expectation if the
correlations were only short-range.

To analyze the middle and bottom parts, we first observe that for almost all
sequence that we studied, purine-rich regions (compared to the average
concentration over the entire strand) alternate with pyrimidine-rich regions,
corresponding to the “up-hill” and “down-hill” portions of the DNA walk. To
take into account the fact that the concentrations of purines and pyrimidines
are not constant throughout the single strand base pair sequence, each DNA
walk representation is partitioned into three segments demarcated by the
global maximum (“max’) and minimum (“min”) displacements. Then we
analyze the fluctuation within each segment separately. We found that for the
middle and bottom parts that @ =1/2 to within the level of fluctuation
associated with the finite length of chain analyzed.

3. Possible artifacts

Naturally, we worried constantly that there was some possible “artifact” in
the analysis that would invalidate our finding that spliced together coding
regions as well as sequences containing only coding regions are uncorrelated,
while sequences containing non-coding “junk” possess long-range power-law



H.E. Stanley et al. | Long-range power-law correlations 11

correlations. Hence we carried out numerous tests, some of which are reported
on below. Since the calculation of F(/) for the DNA walk representation thus
has the potential of providing a new, quantitative method to distinguish coding
and non-coding regions, it is particularly important to be certain that there are
no artifacts of this method.

3.1. Sampling statistics

In order to see if this scaling behavior is ‘“universal”, we first applied our
analysis to more than 100 representative DNA sequences across the
phylogenetic spectrum (comprising altogether some 107 base pairs analyzed —
by contrast, Voss [24] has confirmed our findings using 25000 DNA se-
quences). The result of some of this analysis is provided in table 1 of ref. [21].
The results confirm that long-range correlations (« > 1/2) are characteristic of
DNA containing non-coding base pairs but for coding sequences, o =0.50 %
0.05.

3.2, Biased but uncorrelated walks

One of the first concerns that we met in presenting our work to others was
the confusion that for a biased but uncorrelated random walk, @ would aiso be
larger than 1/2. Much DNA material contains regions that have more purines
(or pyrimidines) than 50%:; this phenomenon is termed “strand bias”. There-
fore, we studied a variety of ““artificial”” base sequences in which we deliberate-
ly introduce a controlled measure of strand bias. These artificial sequences
nonetheless all have « =1/2.

To demonstrate this fact explicitly, we constructed fig. 3. Fig. 3a shows an
unbiased random walk with exactly the same number of steps, 2941, as in the
case of the same gene analyzed in fig. 4. The data clearly corroborate the
expected result, a =1/2. Fig. 3b shows a 2941-step biased random walk, and
again the data clearly corroborate the expected result, @ = 1/2. Fig. 3c shows a
2941-step correlated random walk, with correlation parameter 0.61, and now
the data corroborate the expected result, @ = 0.61. Thus, long-range correla-
tions bear no relation whatsoever to strand bias: The exponent is determined by

1 o~
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3.3. Effect of finite sequence length

To demonstrate how the finite size sample affects the statistical quantity F,
we show in fig. 4 plots of F for human metallothionein for three different sizes.
First we randomly choose a sub-sequence of 300 nucleotides from the entire
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Fig. 3. F(l) versus / for three different type of artificial sequences: (a) Unbiased random
uncorrelated sequence (i.e., 50% purines); (b) biased but still uncorrelated sequence (with 60%
purines); and (c) correlated sequence with correlation parameter 0.61 (with 50% purines). The
dashed line has slope 0.5, while the solid line has slope 0.61. The different symbols represent
different size of the sequences: The entire sequence of 2941 nucleotides (circles), the sub-sequences
of 1000 nucleotides (crosses) and 300 nucleotides (open squares).
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Fig. 4. F({) versus [ for three different sizes of samples: The whole sequence of 2941 nucleotides
(circles), the sub-sequences of 1000 nucleotides (crosses) and 300 nucleotides (open squares). The
dashed line has slope 0.5, while the solid line has slope 0.61. Note that the linearity in all cases
extends up to a fraction of about 1/10 the sample size, a fact familiar to workers involved in

statistical analysis of this sort.
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gene sequence to calculate the quantity F within this small sample (open
square). Second, we choose (again randomly) a piece of the sequence of 1000
nucleotides from the same gene, repeat the analysis and plot the results
(crosses). Finally, we analyze the entire sequence (2941 nucleotides) and plot
the results (circles). The “fall-off” in the straight line behavior after the
distance [/ reaches approximately one tenth of the size of the sample is typical
of all fractal analyses. It is also found in sequences of correlated and random
numbers (fig. 3). The trend of obtaining longer regions of straight line behavior
for larger size samples is what one expects on statistical grounds.

One can always worry that the long-range features will disappear for longer
DNA sequences. As evidence that the long-range feature does not disappear
for larger samples, ref. [21] analyzed the entire human beta globin region
(73326 bases) and found linearity up to [ = 7000. Recently, Munson et al. [26]
analyzed the entire yeast III chromosome (315000 bases) [45} and found
linearity up to /=31500. In general, the data are linear over a range that is
about a factor of ten less than the range of the data. This increase in statistical
error when there are less than roughly 10 independent data sets is usually
found for analyses of this sort. Thus, e.g., if a gene has 10 000 nucleotides,
then there are only 10 independent sets of data obtained when the calipers are
separated by a distance 1000.

One can worry about the apparent lack of consistency between values of «
measured for different genes, or even for different regions within the same
gene. Peng et al. have recently carried out a systematic study of the
fluctuations in the correlation exponents obtained [35]. They indeed find
prominent sample-to-sample variations in the scaling exponent, as well as
variations within a single sample. To determine if these fluctuations may result
from finite system size, they generate correlated random sequences of compar-
able length and study the fluctuations in this control system. Peng et al. find
that the DNA exponent fluctuations are consistent with those obtained from
the control sequences having long-range power law correlations.

3.4. Other methods of measuring long-range correlations

One can also worry that the apparent long-range correlation is some artifact

of the DNA walk methed itself. To compare the fluctuations of « in our DNA

walk method with those found in other methods, Peng et al. used two standard
methods to study the correlation property of sequences, namely the correlation
function C(!) and the power spectrum S(f). The power spectrum density,
S(f), is obtained by (a) Fourier transforming the sequence {u(i)} and (b)
taking the square of the Fourier component. For a stationary sequence, the

SR RALL [ 9.8 Lo

power spectrum is the Fourier transform of the correlation function. If the
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correlation decays algebraically (not exponentially), i.e., there is no charac-
teristic scale for the decay of the correlation, as we found in the non-coding
DNA sequences, then we expect power-law behavior for both the power
spectrum and the correlation function,

S(F)~ (L1f)P (2b)
and

ciy~ @1y . (2¢)
The correlation exponents «, 8 and y are not independent, since [14,15]

a=(1+pB)2=02~-vy)/2. (3)

For a typical DNA sequence of finite length, both the correlation function and
power spectrum are fairly noisy, but the estimates of 8 and y obtained are
consistent with those calculated from the DNA walk method (see fig. 5). The
reason for the smaller fluctuations of & in the DNA walk method is due to the
fact that F*(!) is a double summation of C(/). Thus it would seem that the
original DNA walk method is more useful due to reduced noise.

4. Difference between correlation properties of coding and non-coding regions

Qur initial renort 1211 on lone-range (scale-invarian ) correlations in DNA
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sequences has generated contradicting responses. Some [22,24,26] support our
initial finding, while some [23,28,32,34] disagree. Furthermore, the conclusions
of refs. [24] and [23,28,32] are inconsistent with one another in that [23] and
[34] doubt the existence of long-range correlations (even in non-coding
senuences\ while D’%] and IQR ’%2] conclude that even coding regions display
long-range correlatlons (a >1/ 2). Prabhu and Claverie [28] claim that their
analysis of the putative coding regions of the yeast chromosome III [45]
produces a wide range of exponent values, some larger than 0.5. The source of
these contradicting claims may arise from the fact that, in addition to normal
statistical fluctuations expected for analysis of rather short sequences coding
regions typically consist of only a few lengthy regions of alternating strand bias.
Hence scaling analysis cannot be applied reliably to the entire sequence but
only to sub-sequences.

Figure 6a displays our analysis of a typical coding sequence, consisting of two
large sub-regions, each with different strand bias; the first (roughly 22000
nucleotides) is G rich (compared to the average concentration of the entire
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Fig. 5. Ten different coding sequences, plotted in the same form as fig. 1. Note that for all ten
cases, there appear regions with one strand bias, followed by regions of a different strand bias. The
fluctuation on either side of the overall strand bias is found to be random, a fact that is plausible by
looking at these DNA walk representations. The bias introduced by the change in concentration of
purine and pyrimidine would not be eliminated by the average term in eq. (2) of the manuscript if
pieces of different bias would be analyzed together.

sequence), the second G poor. The scaling analysis of F(/) (fig. 6c) on the
entire sequence shows a crossover behavior, i.e., the log-log plot of the F(I)
versus / line has an initial slope 0.5 and curving toward 1 at larger values of /.
This crossover behavior is typical of many physical systems having a charac-
teristic scale. In this case, this characteristic length scale is associated with the
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Fig. 6. (a) Landscape representation of the intronless sequence of the complete genome for
lambda phage (GenBank: LAMCG, 48502 base pairs). Each “up” step corresponds to a guanine
(G) and a “down” step corresponds to any one of the other three nucleotides (A, C or T). For
graphical representation we plot the DNA walk such that the end point has the same vertical
displacement as the starting point (for the statistical analysis, we use the original definitions). (b)
Landscape for a biased random walk, where the bias is similar to that of the DNA sequence: in the
first half, p, = 0.3 (>1/4, the value expected in the absence of strand bias) followed by p,, =0.2
(<1/4) in the second half. (¢) The rms fluctuation in landscale altitude [2], F(/), for the full
genome (C, slope @ = (8 + 1)/2=10.95 for { > 100} and for the first sub-region (O, slope 0.54). (d)
The rms fluctuation for the biased random walk (slope 0.96) and for the first sub-region (slope
0.54). Similar behavior was observed for the DNA walk walk with the purine—pyrimidine rule (step
“up” for C and T; step “down” for A and G).

length of the two regions of strand bias. However, when the effects of this
strand bias are first removed by separately analyzing the sub-regions, then we

fGnd ~ ~l tn N & A
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We also calculate F(!) for an artificial “control” sequence consisting of a
50 000-step biased random walk with similar strand biases as in the two regions
of the DNA sequence (fig. 6b). We observe the same crossover behavior when

the entire sequence was analyzed, but obtain the correct exponent a = 0.5
'S cppnrntn’v nnnlyzed (ﬁo ﬁd\ F‘loc 6¢, d also show
that failure to correct for the crossover due to alternatmg regions of strand bias
gives rise to a larger slope (upper curves) at larger values of / and hence
misleadingly large values for the correlation exponents.

The power spectrum S(f) for the entire sequence has an initial region of
1/f* behavior at low frequency (that could be misinterpreted as indicative of
long-range correlation, 8 #0) followed by a flat region (indicative of no
correlation or “white noise”’). However, if the effects of strand bias are first
removed by separately analyzing the sub-regions, then we find a flat S(f) —and
hence the correct correlation exponent g =0. We also calculated S(f) for a
“control” consisting of a 50 000-step biased random walk with similar strand
biases as in the two regions of the gene (fig. 6b), and found a misleading
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