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Abstract:We present a combined wavelet and analytic signal approach to study
biological and physiological nonstationary time series. The method enables one to
reduce the effects of nonstationarity and to identify dynamical features on different
time scales. Such an approach can test for the existence of universal scaling prop-
erties in the underlying complex dynamics. We applied the technique to human
cardiac dynamics and find a universal scaling form for the heartbeat variability
in healthy subjects. A breakdown of this scaling is associated with pathological
conditions.

10.1 Introduction

The central task of statistical physics is to study macroscopic phenomena
that result from microscopic interactions among many individual compo-
nents. This problem is akin to many investigations undertaken in biology.
In particular, physiological systems under neuroautonomic regulation, such
as heart rate regulation, are good candidates for such an approach, since: (i)
The systems often include multiple components, thus leading to very large
numbers of degrees of freedom, and (ii) the systems usually are driven by
competing forces. Therefore, it seems reasonable to consider the possibility
that dynamical systems under neural regulation may exhibit temporal struc-
tures which are similar, under certain conditions, to those found in physical
systems. Indeed, concepts and techniques originating in statistical physics
are showing promise as useful tools for quantitative analysis of complicated
physiological systems.

An unsolved problem in biology is the quantitative analysis of a nonsta-
tionary time series generated under free-running conditions [1-3]. The signals
obtained under these constantly varying conditions raise serious challenges
to both technical and theoretical aspects of time series analyses. A central
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Fig. 10.1. Representative complex physiological fluctuations. Cardiac interbeat
interval (normal sinus rhythm) time series of 2000 beats from (a) a healthy subject,
(b) a subject with obstructive sleep apnea, (c) a subject with congestive heart
failure and (d) a sudden cardiac death subject with ventricular fibrillation. Note
the nonstationarity (patchiness) of these time series [most apparent in (a) and
(b)]. Although these patches clearly differ in their amplitude and frequency of
variations, their quantitative characterization remains an open problem and limits
the applicability not only of traditional methods of analysis and modeling, but also
newer techniques based on “chaos” theory.

question is whether such noisy fluctuating signals contain dynamical patterns

essential for understanding underlying physiological mechanisms.
Representative examples of complex dynamical behavior under physiologic

and pathologic conditions are shown in Fig. 10.1. Figure 10.1a shows a physi-
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ologic cardiac interbeat time series—the output of a spatially and temporally
integrated neuroautonomic control system. The time series shows erratic fluc-
tuations and “patchiness”. These fluctuations are usually ignored in conven-
tional studies which focus on averaged quantities. In fact, these fluctuations
are still often labeled as “noise” to distinguish them from the true “signal” of
interest. Furthermore, these patterns change with pathological perturbations
(shown in Figs. 10.1b-10.1d). However, with the recent adaption and exten-
sion of methods developed in statistical physics and nonlinear mathematics,
it has been found that the physiological fluctuations shown in Fig. 10.1a
exhibit an unexpected hidden scaling structure [4-7]. These findings raise
the possibility that understanding the origin of such temporal structures and
their alterations may (i) elucidate certain basic features of heart rate control
mechanisms, and (ii) have practical value in clinical monitoring.

When analyzing complex cardiac fluctuations of the type shown in Fig. 10.1a,
we must carefully exclude two obvious explanations for these observed struc-
tures: (i) they are simply an epiphenomenon of random (uncorrelated) trends,
or (ii) they are a trivial consequence of the fact that cardiac function under
neuroautonomic control is actually modulated by independent mechanisms
with many time scales. To address the first possibility, researchers have re-
cently developed and implemented methods to deal with the technical issue
of nonstationarity in cardiac time series. To test the second possibility, nu-
merically simulated systems with multiple time scales were studied, leading
to the conclusion that robust scaling structures cannot be generated triv-
ially from systems modulated by multiple time scales [8]. Instead, certain
unique conditions are required to give the structures observed. Furthermore,
these two “mechanisms” will not account for the observation of consistent
changes in scaling patterns under pathological conditions, where complex
nonstationarity and multiple time scale modulation are also present, but in
altered form.

Among the difficulties associated with research on biomedical systems is
not only the extreme variability of the signals but also the necessity of op-
erating on a case-by-case basis. Often one does not know a priori which
information is pertinent and on what scale'it is located. Another impor-
tant aspect of biomedical signals is that the information of interest is often
a combination of features that are well-localized (temporally or spatially)
and others that are more diffuse. As a result, the problems require the use
of methods sufficiently robust to handle events that can be at opposite ex-
tremes in terms of their time-frequency localization. In the past few years,
researchers have developed powerful wavelet methods for multiscale repre-
sentation and analysis of signals [9-17]. These new tools differ from the
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traditional Fourier techniques in that they localize information in the time-
frequency plane and are especially suitable for the analysis of nonstationary
data signals.

Due to the wide variety of signals and problems encountered in medicine
and biology, the spectrum of applications of the wavelet transform has been
extremely large. It ranges from signal processing analysis of physiological sig-
nals in bioacoustics (e.g., turbulent heart sounds) [18-27], electrocardiogra-
phy [28-42], and electroencephalography [43-53] to applications for compres-
sion [54-57] and enhancement [58-60] in biomedical imaging, noise reduction
[61-63], detecting microcalcifications in mammograms [64-69], detection and
reconstruction techniques for X-ray tomography [70, 71], magnetic resonance
imaging [72-75], positron emission tomography [76], human vision [77-80],
and human DNA [81, 82]. Extensive reviews of these applications have been
recently published [83-86].

In this chapter, we present a method to analyze the properties of human
cardiac activity by means of a wavelet transform and analytic signal approach
designed to address nonstationary behavior [7]. We find a universal scaling
function for the distribution of the variations in the beat-to-beat intervals
for healthy subjects. However, such a scaling function does not exist for a
group with a cardiopulmonary instability due to sleep apnea (a condition
in which breathing abnormalities during sleep affect cardiac activity). This
scaling form allows us to express the global characteristics of a highly het-
erogeneous time series of interbeat intervals of each healthy individual with
a single parameter. We find also that the observed scaling represents the
Fourier phase correlations attributable to the underlying nonlinear dynam-
ics. This approach has the potential to quantify the output of other nonlinear
biological signals.

10.2 Nonstationary Physiological Signals

A time series is stationary if its statistical characteristics such as the mean
and the variance are invariant under time shifts, i.e., if they remain the same
when t is replaced by t + A, where A is arbitrary. Then the probability den-
sities, together with the moment and correlation functions, do not depend
on the absolute position of the points on the time axis, but only on their
relative configuration [87]. Non-stationarity, an important feature of biologi-
cal variability, can be associated with regimes of different drifts in the mean
value of a given signal, or with changes in its variance which may be gradual
or abrupt.

Time series of beat-to-beat (RR) heart rate intervals [Fig. 10.2(a)] ob-
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Fig. 10.2. (a) Segment of electrocardiogram showing beat-to-beat (RR;) inter-
vals. (b) Plot of RR-time series vs. consecutive beat number for a period of
6h (= 2.5 x 10% beats). Nonstationarity (patchiness) is evident over both long and
short time scales. (c) Wavelet transform Ty(RR) of the RR-signal in (b) using
the second derivative of the Gaussian function ¥(?) as analyzing wavelet with scale
a = 8 beats. Nonstationarities related to constants and linear trends have been
filtered. (d) Instantaneous amplitudes A(t) of the wavelet-transform signal in (c);
A(t) calculated using the Hilbert transform measures the cumulative variations in
the interbeat intervals over an interval proportional to the wavelet scale a.
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tained from digitized electrocardiograms are known to be non-stationary and
exhibit extremely complex behavior [88]. A typical feature of such nonsta-
tionary signals is the presence of “patchy” patterns which change over time
[Fig. 10.2(b)]. The mechanism underlying this complex heart rate variabil-
ity is related to competing neuroautonomic inputs [89, 90]. Parasympathetic
stimulation decreases the firing rate of pacemaker cells in the heart’s sinus
node. Sympathetic stimulation has the opposite effect. The nonlinear inter-
action (coupling) of the two branches of the nervous system is the postulated
mechanism for the type of erratic heart rate variability recorded in healthy
subjects [91-93]. We focus our studies on interbeat interval variability as an
important tool for elucidating possibly non-homeostatic cardiac variability
because (i) the heart rate is under direct neuroautonomic control, (ii) inter-
beat interval variability is readily measured by non-invasive means, and (iii)
analysis of these heart rate dynamics may provide important diagnostic and
prognostic information.

Even under healthy, basal conditions, the cardiovascular system shows er-
ratic fluctuations resembling those found in dynamical systems driven away
from a single equilibrium state [94]. Do such “nonequilibrium” fluctuations
[95] simply reflect the fact that physiological systems are being constantly
perturbed by external and intrinsic noise? Or, do these fluctuations actu-
ally contain useful information about the underlying nonequilibrium control
mechanisms?

Traditional approaches—such as the power spectrum and correlation analy-
sis[96, 97]—are not suited for such nonstationary (patchy) sequences. In par-
ticular, they do not carry information stored in the Fourier phases which is
crucial for determining nonlinear characteristics [98-100].

To address these problems, we develop a method—“cumulative variation
amplitude analysis” (CVAA)—to study the subtle structure of physiologi-
cal time series. This method comprises sequential application of a set of
algorithms based on wavelet and Hilbert transform analysis.

10.3 Wavelet Transform

We first apply the wavelet transform [Fig. 10.2(c)], because it does not re-
quire stationarity and it preserves important Fourier phase information. The
wavelet transform [9, 101, 102] of a time series s(t) is defined as

T, (to, a) = %/-‘-Oos(t)?/) (t_t‘)) at, (10.1)

—oo a
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Fig. 10.3. Derivatives of the Gaussian function as analyzing wavelet extract the
singularities (variations) from a signal with (a) constant and (d) linear trends.
Wavelet transform of the signal in (a) using ¥ ag analyzing wavelet with (b)
smaller and (c) larger time scale. () ¥(!) and (f) ¥(?) are used on the signal in (d)
at the same time scale.

where the analyzing wavelet 7 has a width of the order of the scale a and is
centered at t,. The wavelet transform is sometimes called a “mathematical
microscope” because it allows one to study properties of the signal on any
chosen scale a. For high frequencies (small a), the 7 functions have good
localization (being effectively non-zero only on small sub-intervals), so short-
time regimes or high-frequency components can be detected by the wavelet
analysis. However, a wavelet with too large a value of scale a (low frequency)
will filter out almost the entire frequency content of the time series, thus
losing information about the intrinsic dynamics of the system. We focus
our “microscope” on a scale a = 8 beats which smooths locally very high-
frequency variations and best probes patterns of duration 30 sec to 1 min.
The wavelet transform is attractive because it can eliminate local polynomial
behavior (trends) in the nonstationary signal by an appropriate choice of the
analyzing wavelet ¥ [103].
In our study we use derivatives of the Gaussian function,
() = —({n—e‘%'z. (10.2)
dt»

The first derivative is orthogonal to segments of the time series with an
approximately constant local average. This results in fluctuations of the
wavelet transform values around zero with highest spikes at the positions
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where a sharp transition occurs [Fig. 10.3(b)]. Thus, the larger spikes indicate
the boundaries between regimes with different local average in the signal,
and the smaller fluctuations represent variations of the signal within a given
regime. With increasing wavelet scale a, the fluctuations become broader
and reflect the dominant structures (variations) in the signal [Fig. 10.3(c)]
Since (1) is not orthogonal to linear (non-constant) trends, the presence of
consecutive linear trends [Fig. 10.3(d)] in the RR-intervals will give rise to
fluctuations of the wavelet transform values around different nonzero levels
corresponding to the slopes of the linear trends [Fig. 10.3(e)]. The second
derivative 1 of the Gaussian function and higher order derivatives can
eliminate the influence of linear as well as nonlinear trends in the fluctuations
of the wavelet transform values [Fig. 10.3(f)].

The wavelet transform allows one to “extract” from the data particular
features. The object is to probe the variations in the heart rate signal at
different time scales. The particular choice of the derivatives of the Gaussian
function as analyzing wavelets allows us to extract these variations. One can
argue that the same can be done by simply subtracting consecutive interbeat
intervals by analyzing the increments only, but such standard analysis does
not distinguish healthy from unhealthy cardiac dynamics [5]. The reason
is that the wavelet transform in addition to extracting the variations over
given time-scale in the heart rate signal reduces masking effects of the non-
stationarities since the analyzing wavelet is orthogonal to local polynomial
trends. The wavelet also filters out the very high-frequency noise in the orig-
inal signal, preserving at the same time the sharpness of the edges separating
different patterns in the signal, thus minimizing possibly artificial errors in
the statistical analysis. Moreover, we find that the scale of the wavelet is
crucial for extracting the hidden patterns in the cardiac dynamics. Thus,
the ability of the wavelet transform to probe the signal on different scales is
important for detecting essential features of cardiac dynamics under healthy
as well as pathologic conditions.

The wavelet transform is thus a cumulative measure of the variations in
the heart rate signal over a region proportional to the wavelet scale a, so the
study of the behavior of the wavelet values can reveal intrinsic properties of
the dynamics masked by nonstationarity.

10.4 Hilbert Transform

The wavelet transform signal at a fixed scale [Fig. 10.2(c)] shows segments
of different duration and amplitudes. So the next step of the CVAA is to
extract the amplitudes of the variations in the beat-to-beat signal by means
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of an analytic signal approach [96, 104] which also does not require station-
arity. This general approach, based on the Hilbert transform and originally
introduced by Gabor [105], unambiguously gives the instantaneous phase and
amplitude for a given signal s(t) (in our case the wavelet transform of the
interbeat interval time series) via construction of the analytic signal S(t),
which is a complex function of time defined as

S(t) = s(t) + i5(t) = A(t)e', (10.3)

Here 3(t) is the Hilbert transform of s(t),

o0
5(t) = 71P.V. f

where P.V. means that the integral is taken in the sense of the Cauchy prin-
cipal value. The amplitude is defined as

5()
-7

T (10.4)

At) = +/s52(t) + 82(t) (10.5)

and the phase as
é(t) = tan~' (5(t)/s(t)). (10.6)

The Hilbert transform 5(¢) of s(f) can be considered as the convolution
of the functions s(¢) and 1/mt. This means that the Hilbert transform
can be realized by an ideal filter whose amplitude response is unity, and
phase response is a constant 7/2 lag at all frequencies ([96]). A harmonic
oscillation s(t) = Acoswt is often represented in the complex notation as
Acoswt+jAsinwt. This means that the real oscillation is complemented by
the imaginary part which is delayed in phase by 7/2, and which is related
to s(t) by the Hilbert transform. The analytic signal is the direct and nat-
ural extension of this technique, as the Hilbert transform performs the —m /2
phase shift for every frequency component of an arbitrary signal.

Why do we need the instantaneous amplitude (envelope) of the signal?
Suppose that our wavelet transform signal for a given scale consists of two
segments (patches), both being sine waves with the amplitudes A and A’.
Then the values of the signal for the first patch are distributed from —A to A,
and for the second patch from — A’ to A’ (A’ > A). So the distributions of the
data points values along the two patches of the signal overlap between — A and
A. However, if we consider the distributions of the instantaneous amplitudes
of the data points from these two segments, then they do not overlap; they
are, actually, two points, P(A) and P(A’) with values reflecting the number
of data points in each segment [Fig. 10.4]. By changing the wavelet scale we
can learn about the distribution of patches with different duration.
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Fig. 10.4. Segments of sinusoidal signal with different frequencies and amplitudes
(solid line) and their envelope obtained from Hilbert transform (dashed line).

10.5 Universal Distribution of Variations

Quantifying the probability distribution of variation amplitudes in the inter-
beat intervals can provide insights into the underlying dynamical processes
because the distribution of interbeat intervals is directly related to the mech-
anisms which control heart rate variability. Therefore, by finding consistent
features of the distribution which are robust with respect to different healthy
subjects, we can quantify physiologic dynamics. However there are impor-
tant technical difficulties which must first be overcome before such robust
features can be found.

Among the possible reasons why an interbeat interval histogram can differ
from case to case are: (i) Histograms can differ because they have different
means and standard deviations but follow the same functional form. (ii)
Histograms are described by different functional forms i.e., they belong to
different classes of processes. The first type of difference is commonly ob-
served (especially in physiological data where significant variation between
individuals is expected) and should be taken care of by properly “renormal-
izing” (with respect to the mean and standard deviation) the histogram. If
we assume that heart rate control mechanisms in healthy subjects follow the
same general set of dynamical rules, then we expect that some variables of the
system’s output will be described by a single, well-defined distribution func-
tion. Functional differences between distributions, on the other hand, can
be a result of altered mechanisms, and could be indicative of pathological
behavior.

We analyzed the distribution of the amplitudes of the beat-to-beat varia-
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Fig. 10.5. (a) Probability distributions P(z) of the amplitudes of heart rate vari-
ations ¢ = A(t) for a group of 18 healthy adults (after wavelet transform with
¥ and scale ¢ = 8 beats). Individual differences are reflected in the different
average value and widths (standard deviations) of these distributions. All distri-
butions are normalized to unit area. (b) Same probability distributions as in (a)
after rescaling: P(z) by Pmax, and & by 1/Pnax to preserve the normalization to
unit area. This rescaling is equivalent to the scaling procedure discussed in the
text (Eq. 10.9), since P(z) = P(z,b) and Prax o b. We are able to describe the
distributions using a single curve, indicating a robust, consistent scaling mechanism
for the nonequilibrium dynamics. (c¢) Probability distributions for a group of 16
subjects with obstructive sleep apnea. We note that the second (rightward) peak
(arrow) in the distributions for the sleep apnea subjects corresponds to the tran-
sient emergence of characteristic pathologic oscillations in the heart rate associated
with periodic breathing (Fig. 10.1b). (d) Distributions for the apnea group after
the same rescaling as in (b). These distributions cannot be well described by a
single curve, indicating that the nonequilibrium dynamics are altered.
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tions [Fig. 10.2(d)] for a group of healthy subjects (V = 18: 5 males and 13
females; age 20-50, mean 34) and a group of subjects [106] with obstructive
sleep apnea [107,108] (N = 16 males; age 32-56, mean 43). To minimize
nonstationarity due to changes in the level of activity, we begin by consider-
ing night phase (12 P.M.—6 A.M.) records of interbeat intervals (= 10* beats)
for both groups.

Inspection of the distribution functions of the amplitudes of the cumula-
tive variations reveals marked differences between individuals [Fig. 10.5(a)].
These differences are not surprising given the underlying physiological differ-
ences among healthy subjects.

For the healthy group, we find that these distributions are well fit by the
generalized homogeneous form [109] (the Gamma distribution):

bll+1 v, ,—bz
P(z,b) = OE)) Ve "?, (10.7)
where b = v/zg, ['(v+1) is the Gamma function, 2, is the position of the peak
P = Pyax, and v is a fitting parameter [Fig. 10.6(a)]. A function P(z,b) is a
generalized homogeneous function if there exist two numbers o and f—called
scaling powers—such that for all positive values of the parameter A

P(X*z, APb) = AP(z,b). (10.8)

Generalized homogeneous functions are defined as solutions of this functional
equation. One can see that in our case, P(z,b) satisfies (10.8) with a = —1
and 8 = 1.

Functions describing physical systems near their critical points are known
to be generalized homogeneous functions [110]. Data collapse is among the
key properties of generalized homogeneous functions. Instead of data points
falling on a family of curves, one for each value of 4, data points can be made
to collapse onto a single curve given by the scaling function

Pu) = B%Q, (10.9)

where the number of independent variables is reduced by defining the scaled
variable v = bz. Our results show that a common scaling function P(u)
defines the probability density of the magnitudes of the variations in the
beat-to-beat intervals for each healthy subject. Note that it is sufficient
to specify only one parameter b in order to characterize the heterogeneous
heartbeat variations for each subject in this group.

To test the hypothesis that there is a hidden, possibly universal, struc-
ture to these heterogeneous time series, we rescale the distributions and find
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for all healthy subjects that the data conformn to a single scaled plot (“data
collapse”) [Fig. 10.5(b)]. Such behavior is reminiscent of a wide class of
well-studied physical systems with universal scaling properties [110, 111]. In
contrast, the subjects with sleep apnea show individual probability distri-
butions that fail to collapse [Fig. 10.5(d)]. The collapse of the individual
distributions for all healthy subjects after rescaling their “individual” para-
meter is indicative of a “universal” structure. The term “universal” is used
in the sense that a closed mathematical scaling form is established describ-
ing in a unified quantitative way the cardiac dynamics of all studied healthy
subjects.

An analysis of the heart rate dynamics for healthy subjects during the
daytime (noon—6 P.M.) indicates that the observed, apparently universal,
behavior holds not only for the night phase but for the day phase as well
[Fig. 10.6(b)]. Semilog plots of the averaged distributions show a system-
atic deviation from the exponential form (slower decay) in the tails of the
night-phase distributions, whereas the day-phase distributions follow the ex-
ponential form over practically the entire range. Note that the tail of the
observed distribution for the night phase indicates higher probability of larger
variations in the healthy heart dynamics during sleep hours in comparison
with the daytime dynamics.

We observe for the healthy group good data collapse with a stable scaling
form for wavelet scales @ = 2 up to ¢ = 64 [Fig. 10.6(c)]. However, for
very small scales (¢ = 1,2) the group average of the rescaled distributions
of the apnea subjects is indistinguishable from the average of the rescaled
distributions of the healthy group. Thus, very high frequency variations are
equally present in the signals from both groups. Our analysis yields the most
robust results when ¢ is tuned to probe the collective properties of patterns
with duration of & } — 1 min in the time series (¢ = 8,10). The subtle
difference in the tail of the distributions between day and night phases is
also best seen for this scale range.

We note that direct analysis of interbeat interval histograms does not lead
to data collapse or separation between the healthy and apnea group. Such
histograms measured directly for each subject do not converge to a single
representative curve describing healthy dynamics, because the interbeat in-
terval time series is highly nonstationary. Even rescaling the time series to
give all histograms identical means and variances does not lead to a com-
mon curve for the histograms. Moreover, the direct application only of the
Hilbert transform yielding the probability distribution of the instantaneous
amplitudes of the original signal does not distinguish clearly healthy from
abnormal cardiac dynamics. Hence, the wavelet transform, with its ability to
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Fig. 10.6. (a) The solid line is an analytic fit of the rescaled distributions of the beat-
to-beat variation amplitudes of the 18 healthy subjects during sleep hours to astable
Gamma distribution with v = 1.4 £ 0.1. (b) Data for 6h records of RR intervals
for the day phase of the same control group of 18 healthy subjects demonstrate
similar scaling behavior with a Gamma distribution and v = 1.8 & 0.1, thereby
showing that the observed common structure for the healthy heart dynamics 1s not
confined to the nocturnal phase. (c) Group average of the rescaled distributions of
the cumulative variation amplitudes for the healthy individuals during nocturnal
hours. Note that the observed Gamma scaling is stable for a wide range of the
wavelet transform scales a.
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be orthogonal to polynomial trends and to probe the signal on different time
scales, proves crucial to extract dynamical properties hidden in the cumu-
lative variations, since different patterns can be observed on different time
scales,

10.6 Wavelets and Scale Invariance

Differences between healthy and abnormal cardiac dynamics are known to be
reflected in different correlations and power spectra [4-6, 97]. However, it is
currently widely assumed in the literature that the difference in time series
of interbeat intervals in sick and healthy adults lies not in the distribution of
the interbeat variations but rather in their time ordering. This assumption
is based on more conventional studies of interbeat increments [112]. These
studies essentially amount to taking derivatives of the heart rate signal and
thus extracting pointwise characteristics. Also, it has been hypothesized that
even if the interbeat variations are different (e.g. smaller) during illness, the
pattern of heart rate variability might be otherwise very similar to that dur-
ing health, so that the interbeat variations for normal and abnormal cardiac
dynamics, once normalized, would have the same distribution. Our study
clearly rejects this hypothesis, showing the presence of scaling in the dis-
tributions of the variation amplitudes for the healthy [Fig. 10.5(b)] and a
breakdown of this scaling for abnormal dynamics [Fig. 10.5(d)]. Moreover,
the stability of this scaling form [Fig. 10.6(c)] indicates that the underlying
dynamical mechanisms regulating the healthy heart beat have similar sta-
tistical properties on different time scales. Such statistical self-similarity is
an important characteristic of fractal objects [98, 113]. The wavelet decom-
position of beat-to-beat heart rate signals can be used to provide a visual
representation of this fractal structure [Fig. 10.7]. The wavelet transform,
with its ability to remove local trends and to extract interbeat variations on
different time scales, enables us to identify self-similar patterns (arches) in
these variations even when the signals change as a result of background inter-
ference. Data from sick heart lack these patterns. Fractal characteristics of
the cardiac dynamics and other biological signals can be successfully studied
with the generalized multifractal formalism based on the wavelet transform
modulus maxima method (WTMM) presented in Chapter 9.

Similar time scale invariance was observed in the experiments of Rodieck
on the interspike intervals of a single neuron cell which distribution was an-
alyzed by Gerstein and Mandelbrot [114]. For several types of singe neuron
cells Gerstein and Mandelbrot find that the interspike intervals distributions
remain invariant with the time scale. However the heartbeat variations, un-
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like the single neuron dynamics, represent the integrated output of spatially
and temporally distributed feedback system.

Analysis of the variance of the distributions for healthy cardiac dynamics
at different time scales shows a power law behavior with an exponent close to
zero. This relates to previous studies reporting long-range anticorrelations in
the heartbeat variations [5]. The findings that correlation functions and dis-
tributions describing physiological systems are not characterized by a single
time scale become more plausible if we consider the survival advantage con-
ferred upon organisms that evolved with an infinite hierarchy of time scales
compared to organisms that evolved with a single characteristic time scale.
Organisms with a physiologic control system generated by a single time scale
are analogous, formally, to the famous Tacoma Narrows bridge, which sur-
vived many years until by chance a wind storm occurred that happened to
correspond to the characteristic frequency (inverse of the characteristic time
scale). Organisms that have survived millions of years have plausibly evolved
some feature to render them immune from the analog of the Tacoma bridge
disaster, and this feature would seem to be the absence of any characteris-
tic time scales (compare Fig. 10.1(a) with 10.1(b) and 10.1(d), which show
pathologic mode-locking).

10.7 A Diagnostic for Health vs. Disease

We employ the Kolmogorov-Smirnov test to measure how similar two prob-
ability distributions are. A mathematical relation exists which links the
Kolmogorov-Smirnov parameter D(KS) to the corresponding statistical sig-
nificance level [115]. The larger the value of D(KS), the more unlikely the
two data sets were obtained from the same probability distribution (the null
hypothesis).

The Kolmogorov-Smirnov test provides a simple measure that is defined
as the mazimum value of the absolute difference between two cumulative
distribution functions.

The K-S test is defined as follows:

(i) Once the probability distribution P(z) is found for a subject which we
want to compare to a fit Py(z), the cumulative probability distribution
W (z) for the subject is found using the relation

Wi(z) = /Dm P(z")dz',

and similarly for the the cumulative probability distribution Wy(z) of
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Fig. 10.7. Color coded wavelet analysis of RR signals. The z-axis represents
time (&~ 2000 beats) and the y-axis indicates the scale of the wavelet used
(a =1,2,...,60) with large scales at the top. The brighter colors indicate larger
values of the wavelet amplitudes. The wavelet analysis performed with (2 (the
Mexican hat) as an analyzing wavelet uncovers a hierarchical scale invariance (top
panel) quantitatively expressed by the stability of the scaling form on Fig. 10.6(c).
This wavelet decomposition reveals a self-similar fractal structure in the healthy
cardiac dynamics — a magnification of the central portion of the top panel with
9200 beats on the z-axis and wavelet scale @ = 1,2, ...,25 on the y-axis shows iden-
tical branching patterns (middle panel). Loss of this fractal structure in cases with
sleep apnea (lower panel).
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(ii) The absolute difference AW (z) = |W(z) — Wy(z)] is found.
(iti) The maximum value of this absolute difference is defined as the K-S
parameter [Fig. 10.8(b)]: D(KS) = max[AW (z)].

Once the distributions for the subjects and a fit for healthy subjects are
found, we apply the K-S test to see how different each subject’s distribu-
tion is from the fit. Comparing the individual distributions of the healthy
and sleep apnea subjects with the reported scaling form [Eq. (10.9)] for the
healthy dynamics, we find that the Kolmogorov-Smirnov test can serve as a
potentially useful tool to separate healthy from abnormal cardiac dynamics
[Fig. 10.8(a)]. The question of diagnostics motivates us to look more closely
at the first and second moments of the distributions of the variation am-
plitudes for both groups. We find that a simple presentation of the values
for these moments can be also effectively used to separate quantitatively the
two groups. We present these results in [Fig. 10.8(b)]—the first and second
moments of the healthy distributions exhibit lower values with good linear
fit, whereas for the apnea group these values are higher and dispersed with
almost no overlap with the healthy data.

10.8 Information in the Fourier Phases

Correlation functions measure how the value of some function depends on
its value at an earlier time. Many simple systems in nature have correlation
functions that decay with time in an exponential way. For systems comprised
of many interacting subsystems, physicists discovered that such exponential
decays do not occur. Rather, correlation functions were found to decay with a
power law form. The implication of this discovery is that in complex systems,
there is no single characteristic time [119, 120]. If correlations decay with a
power-law form, we say the system is “scale free” since there is no charac-
teristic scale associated with a power law. Since at large time scales a power
law is always larger than an exponential function, correlations described by
power laws are termed “long-range” correlations—they are of longer range
than exponentially-decaying correlations.

In physiological systems, recent work has suggested that such “long-range”
power-law correlations occur in a range of physiological systems [118, 121,
122] including, most remarkably, the intervals between successive heartbeats
[5,6]. The discovery of long-range correlations in these intervals is all the
more interesting because it appears that these correlations are not present
in certain disease states.

What are the possible adaptive advantages of the apparently far-from-
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Fig. 10.8. (a)The Kolmogorov-Smirnov parameter D(KS) and (b) the values of
the first moments (mean and standard deviation o) of the cumulative variation
amplitude distributions can be used as a diagnostic of the healthy vs. apnea subjects
with more then 80% true-positive recognition.
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equilibrium behavior that appears to characterize the free-running dynamics
of certain neural control systems? First, we note that complex erratic fluc-
tuations shown in Fig. 10.1(a) are not inconsistent with the general concept
that physiological systems must operate with certain bounds. However, an
intriguing possibility is that these complex nonequilibrium dynamics, rather
than classical homeostatic constancy, may be a mechanism for maintaining
physiologic stability. Such complex multi-scale variability keeps the system
from becoming locked to a dominant frequency (mode locking), a common
manifestation of pathologic dynamics [Fig. 10.1(b)]. At the same time, long-
range fractal correlations underlying these complex fluctuations may provide
an important organizational mechanism for systems that lack a characteris-
tic spatial or temporal scale. Finally, the intrinsic “noisiness” of far-from-
equilibrium dynamics may facilitate coping with unpredictable environmental
stimuli.

However, these fractal correlations detected by Fourier and fluctuation
analysis techniques, ignore information related to the phase interactions of
component modes. The nonlinear interaction of these modes accounts for
the visually “patchy” appearance of the normal heartbeat time series.

To ascertain whether the observed scaling of the distributions for healthy
subjects is an intrinsic property of normal heart beat dynamics, we test
the cumulative variation amplitude analysis on artificially-generated signals
with known properties. Our analysis of uniformly-distributed random num-
bers in the interval [0, 1] and of Gaussian-distributed noise with and without
long-range power law correlations shows that after the wavelet transform the
amplitude distributions follow the Rayleigh probability distribution

This finding agrees with the central limit theorem, which can be expressed as
a property of convolutions (in our case wavelet transforms): the convolution
of a large number of positive functions is approximately a Gaussian function,
and the instantaneous amplitudes of a Gaussian process follow the Rayleigh
probability distribution [87].

We perform parallel analysis on surrogate data obtained from a healthy
subject by Fourier transforming the original time series, preserving the am-
plitudes of the Fourier transform but randomizing the phases, and performing
an inverse Fourier transform [Fig. 10.9(c)]. Thus, both the original and surro-
gate signals have identical power spectra. Application of the CVAA method
on this surrogate signal results again in a Rayleigh distribution, whereas the
original time series has a distribution with an exponential tail. This test
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Fig. 10.9. (a) Original time series RR as a function of beat number. (b) Wavelet
transform Ty (RR) of this series. (c) Surrogate signal (R Rsur) after phase random-
ization. (d) Wavelet transform of the surrogate signal which is more homogeneous
(less patchy) in comparison with (b). (e) Probability distributions of the ampli-
tudes of variations after wavelet transform of the original and surrogate signals, as
well as the theoretical Rayleigh distribution. The theoretical Rayleigh agrees with
the distribution of the wavelet transform of the surrogate signal with randomized

phases.
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clearly indicates the important role of phase correlations in the RR time
scries. The presence of these correlations is most likely related to the under-
lying nonlinear dynamics [117,123]. The observed breakdown of this scaling
pattern in the sleep apnea cases—a common and important instability of
cardiopulmonary regulation—is possibly related to pathological mode lock-
ing associated with periodic breathing dynamics [116].

These tests show that the observed scaling in the variations of interbeat
intervals for healthy dynamics actually represents the Fourjer phase correla-
tions. This result is non-trivial since it adds to an ongoing discussion about
whether nonlinear phase interactions are present in healthy cardiac dynamics
[91]. Furthermore, this finding suggests that, for healthy individuals, there
may be a common structure to this nonlinear phase interaction. Also, the
tests demonstrate that the scaling is not an artificial result of our approach in
that it gives the expected results for known processes, i.e., a Rayleigh distri-
bution for the amplitudes of uniformly distributed random numbers and for
Gaussian noise as well. The basis of this robust temporal structure remains
unknown and presents a new challenge to the understanding of nonlinear
mechanisms of heartbeat control.

10.9 Concluding Remarks

(i) Heart rate dynamics under normal conditions display nonequilibrium
fluctuations that reveal a remarkable physiological structure when an-
alyzed using wavelets and methods adapted from statistical physics.

(ii) There is a hitherto unknown scaling pattern to interbeat interval varia-
tions in healthy subjects. This finding allows us to express the global
characteristics of the highly heterogeneous heart rate time series of
each healthy individual with only a single parameter. This scaling
property cannot be explained by activity, since we analyzed data from
subjects during nocturnal hours. Moreover, it cannot be accounted
for by sleep stage transitions, since we found a similar pattern during
day-time hours.

(iii) This scaling is related to the intrinsic nonlinear dynamics of the con-
trol mechanism because it is due to information in the phase relation-
ships. This information is not in the 1/f power spectrum on which
all previous heart rate scaling is based, and any realistic attempt to
model heart rate control will need to account for this scaling behavior.

(iv) The reported results are also the first that clearly show a difference in
the distributions of the interbeat variations for normal and abnormal
heart dynamics. However, to observe it, one must:
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(a) properly reduce masking effects of nonstationarity;
(b) account for the importance of time scales to reveal hidden scaling.

In both aspects the wavelet analysis proves superior to other more
conventional techniques.

(v) The observation of nonlinear dynamics is not accounted for by tradi-

tional physiological mechanisms and motivates new modeling strate-
gies to understand nonequilibrium control systems under healthy and
pathologic conditions.

(vi) The wavelet-based method we present can be applied to other com-

plex, nonstationary time series.
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