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Abstract. We study dilute Ising models on a family of infinitely ramified exact fractals 
whose fractal dimension varies from 1 to 2. We calculate the phase diagram and critical 
exponents as a function of the fractal dimensionality within Migdal’s approximation. 

Phase transitions and percolation on fractal lattices have recently been a subject of 
intensive investigation (Mandelbrot 1982, Gefen et a1 1980, 1983, 1984, Havlin et a1 
1983). Infinitely ramified fractals have been shown to exhibit second-order phase 
transitions at finite temperature and non-trivial percolation thresholds. 

In this letter we study dilute Ising models on a family of infinitely ramified fractals 
whose fractal dimension varies from 1 to 2. This problem has been studied extensively 
on regular euclidean lattices and temperature-concentration phase diagrams have 
been calculated for these systems (Stinchcombe 1983). On the family of fractals which 
will be described below we found, within Migdal’s approximation (Migdal 1975), 
similar phase diagrams. Phase diagrams and critical exponents have been calculated 
as a function of fractal dimensionality. These fractals represent a physical model to 
study the problem of dimension d approaching unity from above (Kirkpatrick 1977, 
Stauffer and Jayaprakash 1978). The fractal family we have studied is shown in figure 
1. These fractals are infinitely ramified (Gefen et al 1984, Havlin et al 1983). The 
fractal dimensionality as a function of the scaling factor b is given by 

ln(b2 - (b - 2)2) - In 4(b - 1) dr= - 
In b In b 

As b varies from 2 to infinity df varies from 2 to 1. In the vicinity of df = 1 (b = 00) we 
have 

s = d f - l  =In4/ln b. (2) 

(3) 

For a one-dimensional pure Ising model the exact recursion relation is 

tanh k = (tanh K ) b ,  

where b is the scaling factor, K = PJ the reduced nearest-neighbour interaction and 
2 the renormalised interaction. 
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Figure 1. (a), ( b )  and (c) are the generators of the fractal family for b = 2, 3 and 4 
respectively. ( d )  represents the second iteration for b = 3. 

For a two-dimensional square lattice the Migdal recursion relation is 

K ‘  = b z  = b tanh-I (tanhb K). (4) 

For the fractal family described above instead of having b paths we have only b - (b  - 2 )  
paths and consequently the approximate Migdal relation is 

K ’ =  2 k  = 2 tanh-I (tanhb K) 

t’ = 2tb/(1 + t 2 b )  
or 

where t = tanh K and t’ = tanh K’. The recursion relation (6) has three fixed points 

t =o, r = l  and t = t,(b), 

The first two are stable, and correspond respectively to the para- and ferromagnetic 
phases ; the third is unstable and corresponds to the para-ferromagnetic and second- 
order phase transition. If the b interactions of each of the two paths are random 
variables, equation (6) becomes 

where t U ( i  = 1,2, .  . . , b) are independent random variables defined by tU = tanh K,. 
In the case of dilution the probability distribution for the random variable t is 

P ( t ) =  (1 - p ) S ( t )  + p S ( t -  to). (8) 
A simple analysis yields the renormalised probability-distribution 

P‘(r’) = (1 - 2 p b  + p 2 ’ ) s ( t ’ ) + 2 ( p b  - p 2 ’ ) 8 ( r f  - t,”) +p2’6 ( t f  - 2 t , b / ( t  + t ib ) ) .  (9) 
Equation (9) is not of the form of equation (8) and we used the two-peak approximation 
(Stinchcombe 1983) to obtain the recursion relations 

where index 0 has been dropped. Equation (loa) is the same as in Havlin er a1 (1983). 
The flow diagram which corresponds to equations (10) is shown in figure 2 in the 

case b = 3. 
In the limit cff+ 1 (b+oo) 
(i) T,- l / ln b - E 

(ii) P,-  1 - l /b2.  
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Figure 2. Flow diagram for b = 3. 

We recover the fact that the lower critical dimensionality for the Ising model is equal 
to 1. 

In the vicinity of the pure fixed point ( tc )  the critical exponent is 

1 / v  = y  = In 2/ln b = ;E.  (1 1) 

In the vicinity of the percolation fixed point ( p c )  the critical exponents are 
1 I /  vp = y, = In 2/ln b = I E  

1/v, = y, =In 2/ln b = ; E  

and consequently the crossover exponent Q is equal to 1. 
The critical exponents in the vicinity of df = 1 are proportional to E = df- 1 as 

expected (Migdall975, Kirkpatrick 1977). The proportionality constant depends upon 
the family of fractals used to model the approach of df= 1 (Gefen et a1 1983). 

This work was initiated during a visit of the two authors at the Center for Polymer 
Studies (Boston) and completed during the workshop on fractals at Les Houches. The 
authors acknowledge fruitful discussions with B B Mandelbrot, H E Stanley and R B 
Stinchcombe. 
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