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Abstract. We study diffusion in the presence of random fields in d-dimensional systems. 
We find an exact upper bound for the mean-square displacement ( R 2 ) S  n2" where U is 
the self-avoiding walk end-to-end exponent. We also present numerical results in two 
dimensions which indicate normal diffusion for d 2 2. This is consistent with the above 
exact bound. 

Diffusion in the presence of random fields has been studied by several authors [l-51. 
Sinai [ 13 found that for a symmetrical distribution of local random fields the diffusion 
in one-dimensional systems is anomalous, characterised by a mean-square displacement 
(x') which scales as 

(x2) - log4 n (1) 

where n is the number of steps. 
The problem of diffusion in the presence of random fields in d = 3 dimensions and 

in percolation systems has been studied recently by Pandey [ 5 , 6 ]  using Monte Carlo 
simulations. On the basis of his numerical data Pandey speculated that in d = 3 
dimensions the mean-square displacement ( R 2 )  increases as a function of time n faster 
than that of diffusion and asymptotically approaches a drift, i.e. ( R 2 ) -  n2. 

In this letter we present theoretical arguments that ( R 2 ) a n 2 '  where Y is the 
self-avoiding walk exponent, v = 3/( d + 2 )  for 1 Q d d 4. We also present numerical 
simulations of diffusion in the presence of random fields in d = 2 dimensions using 
the exact enumeration method [7]. The numerical results suggests that regular diffusion 
already occurs for d = 2, i.e. (R2) - n, and that random fields have no influence for 
d a 2 .  

In the following we consider the general problem, where the probabilities of a 
walker to go from point i to its neighbours { j }  are positive random numbers Pi,j 
obeying Xf-, Pi-,j = 1, where z is the number of nearest neighbours. It is assumed that 
pi-,j and are independent random variables for i # i'. The random field problems 
described by Pandey or in the last paragraphs of this letter are special cases of this 
general problem. 

The mean-square distance from the origin of a random walker, after n steps, is 
given by 
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where the sum over C,, is over all walks of n steps starting at a given point and W (  C,,) 
is the probability of such a walk 

where Pi+.i+l(C,,) is the probability to go from the ith site to the ( i+ l ) th  site along 
the walk C,,. (Probabilities with different i appearing in the product may correspond 
to the same site.) The mean-square distance ( R 2 ( n ) )  is a functional of the local 
probabilities P,+,. We are interested in the quenched average of that quantity, namely 
in the average over probability configurations of ( R * ( n ) )  and we denote it by ( R 2 ( n ) ) .  
Now 

Let us break the sum on the right-hand side of (4) into a sum over the self-avoiding 
walks and all the rest: 

c R2( cfl )W Cfl)  
C" 

= C S A W  R2(cn )w(cn) +E' R2( cn )w(cn) 
C. C ,  

Denoting 

we see that 

where (R2(nj)SAW is the mean-square distance of the self-avoiding walks (SAW) alone 
and ( R 2 ( n ) ) '  is the average over the non-self-avoiding walks. Clearly, 

and since ( R 2 ( n ) )  is just a weighted average of the two quantities we conclude that 

( R 2 (  n 1) ( R 2 (  ))SAW. (9) 
Consider now ( R 2 (  n))sAw, since the probability of a self-avoiding walk is a product 
of n different and independent probabilities, the average probability for such a walk 
is given by w( C,,) = (l/z)". Therefore, 

( R 2 ( n ) ) S A W = C S A W  R2(cn)( l /z)"  (c (l/Z)')-' 
C" C" 
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which is just the usual mean-square distance of self-avoiding walks characterised by 
the a power behaviour in n, so 

( R 2 ( n ) )  s Cn2" ( 1 1 )  

where 2v is given by 2v=6 / (d+2)  for d s 4  and 2u=1  for d > 4  (see, e.g., [ 8 ] ) ,  SO 

that in two dimensions 2v = 1.5 and in three dimensions 2u = 1.2. 
This result suggests that the numerical results of Pandey 151, where in some cases 

he finds ( R 2 (  n ) ) a  n 2 ,  cannot represent the asymptotic behaviour. 
Now it is obvious from inequality ( 1 1 )  that for dimensions higher than four the 

behaviour of ( R 2 ( n ) )  as a function of n is that of usual diffusion without quenched 
random behaviour. In one dimension the diffusion in the presence of quenched random 
fields is anomalous [ 13.  The question is whether anomalous behaviour is to be expected 
for dimensions 1 < d s 4. Obviously the answer to the above problem depends on the 
possible correlations between R 2  and the topological structure of the walks. If no such 
correlation exists or if it is weak enough, normal diffusion is to be expected. In that 
sense quenched disorder would have the same effect as annealed disorder, where it 
can be trivially shown that the behaviour is that of normal diffusion; see, e.g., the 
review articles [7,9]. 

If anomalous diffusion takes place, it is expected to be more anomalous as the 
dimension is lowered. We present in the following paragraphs some numerical indica- 
tions that in two dimensions the diffusion is normal, thus implying that this should 
also be the behaviour for any d 2 2. 

The model we study numerically here is similar to Pandey's model. We study a 
lattice in d-dimensional space where to each site is attached a local field which points 
randomly to one of the z = 2d directions (in hypercubic lattices). The probabilities of 
the walker to step out from such a site are ( 1  + ~ ) / 2 d  in the field direction and (1 - ~ ) / 2 d  
in the opposite direction. In all other directions the probability to step is 1/2d. 

In figure 1 we present results for the mean-square displacement on a square lattice 
in the presence of a random field with E = 0.5. The simulations were performed on a 

n 

Figure 1. Plot of log(R2) as a function of log n for a random field E = 0.5. The results were 
performed using the exact enumeration method [7] and averaging over 100 configurations. 
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lattice of 200x200 size using the exact enumeration method [7]. The figure shows 
that the values of ( R 2 )  are very close to the value of n. The slope in figure 1 is 1 .Of 0.02 
and similar results were obtained for different values of &(OS E < 1). This suggests that 

( R 2 ) =  n (12) 

for any O S  E s 1. 
2 diffusion 

in the presence of symmetrical random fields is normal and is not affected by the 
presence of random fields. 

In summary, our theoretical and numerical results indicate that for d 
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