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We study several structural properties including the shortest path l between two sites separated by a Euclid-
ean distance r of invasion percolation with trapping �TIP� and without trapping �NIP�. For the trapping case we
find that the mass M scales with l as M�ldl with dl�1.510�0.005 and l scales with r as l�rdmin with dmin

�1.213�0.005, whereas in the nontrapping case dl�1.671�0.006 and dmin�1.133�0.005. These values
further support previous results that NIP and TIP are in distinct universality classes. We also study numerically
using scaling approaches the distribution N(l ,r) of the lengths of the shortest paths connecting two sites at
distance r in NIP and TIP. We find that it obeys a scaling form N(l ,r)�rd f �1�d minf (l/rdmin). The scaling
function has a power-law tail for large x values, f (x)�x�h, with a universal value of h�2 for both models
within our numerical accuracy. �S1063-651X�99�12603-5�

PACS number�s�: 61.43.Hv, 05.60.�k, 82.20.Wt

I. INTRODUCTION

Invasion percolation has been introduced by Wilkinson
and Willemsen �1� as a model to describe the evolution of
the front between two immiscible liquids in a random me-
dium when one liquid is displaced by injection of the other.
This process occurs, for example, when water is injected into
oil reservoirs in order to produce oil. Two model variants
have been proposed. The first, nontrapping invasion percola-
tion �NIP�, applies for compressible liquids in which the in-
vading liquid always enters the largest available pore on the
replaced side of the advancing front. The other, invasion per-
colation with trapping �TIP�, finds application for incom-
pressible liquids where the invasion of a pore is forbidden by
the incompressibility constraint when the replaced liquid is
completely surrounded by the intruder—this variant is called
invasion percolation with trapping. Apart from the possible
applications, interest in the NIP and TIP models arises be-
cause both are parameter-free models and self-organize into
critical states �2,3�.

In two dimensions �2D� as well as in three dimensions
�3D�, numerical studies of NIP and convincing heuristic ar-
guments indicate that NIP falls into the same universality
class as regular percolation �1�. This finding is believed to
hold for all dimensions.

The situation for TIP is more complicated. Numerical
studies have found that the fractal dimension d f in 2D of the
NIP (d f�1.90) and TIP (d f�1.82) �4–6� models differs
only by about 4%. This difference is small and heuristic
arguments suggest that in three and higher dimensions the
trapping becomes irrelevant so that NIP and TIP are in the
same universality class. Only recently it has been argued �7�,
using a mapping from optimal paths to shortest paths, that at
least in three dimensions TIP is in a different universality
class from that of regular percolation. Earlier numerical re-
sults for the fractal dimension of the clusters had suggested
that NIP and TIP in 3D fall into the same universality class
as regular percolation �1�.

Therefore, the possibility that finite-size or crossover ef-
fects are responsible for the difference �in 2D� or the agree-
ment �in 3D� of the cluster fractal dimensions cannot a priori
be excluded. Furthermore, there exist only heuristic but no
rigorous arguments that NIP falls into the universality class
of regular percolation, i.e., that d f exactly equals 91/48. To
test these questions, we believe that it is important to search
for properties in which the two models differ more signifi-
cantly than in the fractal dimension, and at the same time to
collect more evidence that two-dimensional �2D� NIP falls
into the regular percolation class.

In this paper we study, apart from the fractal dimension
�Sec. II B�, several other structural properties of NIP and
TIP. Among those are the length l of the shortest path �also
called chemical distance� connecting two sites of a cluster at
Euclidean distance r �Sec. III B� and the cluster mass M (l)
contained within a chemical distance l from a given site �Sec.
III�. The chemical distance is useful to understand transport
properties in disordered media �8�.

As an applied example let us mention the problem of oil
recovery, where water or steam is injected into one borehole
in order to recover oil from another. Here, the chemical dis-
tance between the two boreholes is directly related to the
time of breakthrough of the injected medium at the second
hole �9�.

We also study the distribution N(l ,r) of the number of
cluster sites with chemical distance l and Euclidean distance
r from the cluster center. This distribution has been studied
in a variety of contexts �see, e.g., �8��. For example, for
self-avoiding walk �SAW� chains, it provides insight into
dynamical properties such as the propagation of excitations
along the chain which can perform ‘‘jumps’’ at the positions
where chain elements come close. De Gennes conjectured
the form of this distribution for SAW �10�. Since his argu-
ments possibly apply in a broader context �11�, we test nu-
merically their validity in the NIP and TIP cases �Sec. IV�.
We find there a scaling form of N(l ,r)
�rd f �1�dminf (l/rdmin), with
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the property that f (x)�x�h with h�2 for large x, indepen-
dent of the model �NIP or TIP�.

From the scaling form of N(l ,r) we then compute the
average value of �l(r)	 for fixed values of r, e.g., close to the
origin r�0. The value of h�2 causes the divergence with
system size of all moments of l greater than or equal to 1
�Sec. IV C�. We conclude and summarize our results in Sec.
V.

II. STRUCTURAL PROPERTIES

A. The models

To generate invasion percolation clusters �NIP� in 2D, we
perform the following steps. �i� We first assign random num-
bers on a 2D square array of size L�L . Then �ii� we initiate
the growth by occupying the center site of the lattice �start
the injection of water into the oil reservoir�. In step �iii� we
search along the perimeter of the cluster for the site with the
largest random number �corresponding to the largest pore�.
This perimeter site is then �iv� added to the aggregate �re-
placing the oil in the pore by water�. The last two steps �iii�
and �iv� are then repeated to grow larger and larger clusters
�12�.

In TIP one checks at each step of the growth process
whether the occupied site has closed a loop �trapped replaced
liquid�. The rules are such that liquid cannot escape through
necks created by next-nearest-neighbor occupied sites on the
lattice. The liquid can escape only through a free path at least
one lattice unit wide. If a loop has been closed, then we
forbid the invasion on all enclosed internal perimeter sites of
the aggregate, i.e., we restrict the search of the next largest
random number to only the external perimeter sites of the
cluster �13�.

B. Fractal dimensions

We grow the clusters in steps, stopping at logarithmically
spaced cluster masses of up to M�500 000. In Fig. 1 we
show two typical clusters of the two invasion percolation
models of mass M�50 000. It is apparent from the figure
that TIP has larger trapped regions on all scales, therefore
suggesting a smaller fractal dimension d f than NIP.

To obtain the fractal dimension quantitatively, we mea-
sure the radius of gyration rg of the clusters versus their
mass M and display the results in Fig. 2�a� for NIP and TIP.
For both models we average data from two enembles, one
with 25 000 and 50 000 clusters of masses 
40 000, the
other with �5000 clusters of mass 
500 000. For algorith-
mic reasons the cluster growth has been terminated at span
L�3300. Although we have chosen the largest feasible val-
ues of L, we could not avoid a slight finite-size effect in the
data point corresponding to the largest mass: a fraction of
about 0.01 of all the generated clusters have had a span too
large to fit on the simulation array. The average span is ap-
proximately 2450. Since the missing configurations are very
elongated, rg is rendered slightly too small at M�500 000.
However, we find that this bias is well within the statistical
error of our data.

In Fig. 2�a� we do not plot rg directly, but the rescaled
value rg /M 1/d f , which asymptotically approaches a constant
value. A horizontal line is plotted for comparison. The plot is

quite sensitive to the correct value of d f , which we have
obtained by consideration of the local fractal dimensions
d f(M )��lnM/�lnrg . These values converge to the fractal
dimension d f of the clusters in the limit M→
 . Finite-size
scaling suggests that �d f�d f(M )��M �a, where a is an a
priori unknown model-dependent correction-to-scaling ex-
ponent �14,15�. Demanding that d f�d f(M ) vs M �a should
be linear for large M, we estimate values of a�0.80�0.15
for NIP and 0.60�0.15 for TIP and obtain the corresponding
plots in Fig. 2�b�. A straight line fit to the data in the dis-
played range intersects the abscissa at d f .

We obtain intersections at d f�1.899�0.003 for NIP and
d f�1.831�0.003 for TIP. The measured fractal dimension
of NIP is in very good agreement with the exact value
91/48�1.896 of regular 2D percolation �16�. The dimension
of TIP is larger than the value 1.82 often found in the litera-
ture �5,6�, but is also more precise. The fractal dimensions of
NIP and TIP differ by about 20 standard deviations and thus
we confirm that in 2D the two models belong to different
universality classes.

III. CHEMICAL DISTANCE

A. Total mass

Next we study the chemical distance in the generated
clusters. To this end, we consider the cluster connectivity at

FIG. 1. Snapshots of a NIP �a� and a TIP �b� cluster of mass
M�50 000.
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different growth steps, characterized by the same logarithmi-
cally increasing cluster masses as in the preceding section.
For each stage, we determine the chemical distance l of all
cluster sites to the site closest to the center of mass. We find
the value �l	 by averaging over all the sites in one cluster
over different realizations of the cluster.

The asymptotic scaling behavior of M��l	dl defines the
chemical dimension dl of the cluster. In the same fashion as
for the determination of the fractal dimension in the preced-
ing section, we plot �l	/M 1/dl vs M for NIP and TIP in Fig.
3�a�. As in the case of rg , here also slight finite-size effects
are present at the largest M value, because some very elon-
gated ‘‘linear’’ clusters with span larger than L�3300 are
not sampled. As in the preceding section, we see no signifi-
cant effect on our analysis.

Since the chemical dimension dl corresponds to the
asymptotic slope of the log-log plot of �l	 vs M, we find the
local slopes �lnM/�ln�l	 and plot them in Fig. 3�b� as a
function of M �b. The values of b�0.45�0.15 for NIP and

0.70�0.15 for TIP differ from the correction exponents a of
the asymptotic behavior of rg .

Performing a straight line fit, we find the chemical dimen-
sion from the extrapolation M→
 to be dl�1.671�0.006
for NIP and dl�1.510�0.005 for TIP. The error bars ac-
count for the statistical errors and allow for systematic errors
in b �estimated by performing fits for different data ranges of
M and values of b). Thus, the chemical dimension of TIP
turns out to be significantly lower than that of NIP. As in the
case of the fractal dimension of TIP, this is caused by the
presence of trapped regions in which no further growth oc-
curs �see the next section�.

B. Shortest path

The scaling of the length of the shortest path with the
Euclidean distance between two sites is l�rdmin, which de-
fines the shortest path exponent dmin and is reflected in the
scaling of the average �l	 as a function of rg . We have
therefore plotted �l	 vs rg for different values of the mass M.
Figure 4 displays our data for the NIP and the TIP models.
Just as in the previous cases we rescale our data by dividing
by known �or tentative values� of dmin . For NIP we use

FIG. 2. �a� Plot of the radius of gyration rg divided by M 1/d f

with d f�1.899 �NIP� and d f�1.831 �TIP� vs the number of sites M
in the cluster. For NIP we have averaged over 25 000 systems of
mass M
40 000 (�) and 5050 systems of M
500 000 (*) and
for TIP over 50 000 systems of M
40 000 (�) and 5750 systems
of mass M�500 000 (�). For large M, the graphs become hori-
zontal, indicating that the fractal dimensions equal the chosen res-
caling exponents. A finite-size analysis of the same data is dis-
played in part �b� of the figure. The values of �lnM/�lnrg are
plotted as functions of 1/M a, where a�0.8 for NIP and a�0.6 for
TIP. The straight lines are fits to the data in the range �0, . . . ,0.05� .
The intersect with the abscissa is the fractal dimension which from
these plots equals d f�1.899�0.003 for NIP and d f�1.831
�0.003 for TIP.

FIG. 3. �a� Plot of the average chemical distance l divided by
M 1/dl with dl�1.671 �NIP� and dl�1.510 �TIP� vs the cluster
mass. The symbols and the statistical ensembles correspond to those
in Fig. 2. For large M, the curves approach a constant value, indi-
cating that the dimension dl is very close to the chosen rescaling
exponents. A finite-size analysis of our data is displayed in part �b�
of the figure. The values of �lnM/�lnl are plotted as functions of
1/M b, where b�0.45 for NIP and b�0.7 for TIP. The straight lines
are fits to the data in the range �0, . . . ,0.02� . The intersect with the
abscissa is the fractal dimension which from these plots equals dl

�1.671�0.006 for NIP and dl�1.510�0.005 for TIP.
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dmin�1.133, which is about 1.5 standard deviations larger,
but probably still consistent with the best known value for
regular percolation of dmin�1.130�0.002 reported in �17�.

For TIP we use a value of 1.213. We find that the plot
reacts rather sensitively to the exact value of dmin and we
estimate the error to be about 0.005. The horizontal solid
lines have been added as guides to the eye.

We have verified these values of dmin also by measure-
ments of l vs r in ensembles of configurations grown up to a
fixed span L, without restrictions on the cluster mass. In
these ‘‘static’’ measurements we have recorded the average
value of l and the average minimum value of l for the cluster
sites at distance r from the center of mass. These measure-
ments are consistent with the above values, but they are af-
fected by large systematic finite-size effects. In particular,
the average �l(r)	 at distance r displays approximate loga-
rithmic dependence on L, which we will address in detail
later �Sec. IV C�.

In fact, one can imagine growing a NIP and a TIP cluster
on a substrate with the same disorder. The clusters will be
exactly equal up to the moment when the first trapped
growth sites appear. This is the reason that the accessible
perimeter �18� exponents of NIP and TIP are the same �6,19�
and thus both very likely equal to 4

3 �19�. Then, NIP will
continue to grow in the ‘‘trapped’’ region while TIP cannot
grow there any further. Thus, in NIP additional connections
will be present which tend to lower the average chemical
distance at fixed Euclidean distance. Consequently, the
chemical distances in NIP must be shorter than in TIP, re-
sulting in NIP’s lower dmin .

It is clear that only two of the three quantities d f ,dl , and
dmin are independent, because, for instance, by combining of
M�rg

d f and M�ldl one obtains that l�rg
d f /dl and thus dmin

�d f /dl . This equality is satisfied for our results within the
limits given by the error bars, although the result for NIP
points to a slightly larger value of dl�1.673 compared to the
value 1.671 reported in the preceding section.

IV. DISTRIBUTIONS

A. Joint distribution of l and r

A possible step beyond the above scaling analysis is to
consider the joint distribution NL(l ,r), where NL(l ,r)dldr is

the number of sites with l in the interval l•••l�dl and si-
multaneously r in r•••r�dr for clusters of span L. It is our
goal to establish scaling properties and, if possible, a func-
tional form of this distribution, as has been outlined and
motivated in the Introduction.

To this end we make the commonly used assumption that
NL may be written in the scaling form

N� l ,r ��r� f � l/r��, �1�

where we have suppressed the dependence on L to indicate
that we are interested only in the asymptotic behavior L
→
 . Since l�rdmin, we expect that ��dmin . An integration
over l yields the radial density N(r) of sites at distance r,

N�r ��r��
0




dl f � l/rdmin� �2�

�r��
0




dxrdminf �x � �3�

�r��dmin. �4�

Since the number N(r) of sites in a �fractal or Euclidean�
radial shell of radius r is asymptotically proportional to
rd f �1, we find by comparison that � satifies the relation �
�d f�1�dmin . Knowing � and � , we are in a position to
extract the scaling function f (x) from our simulations by
plotting N(l ,r)/rd f �1�dmin as a function of l/rdmin. Figures 5
and 6 show the resulting data collapse both for the NIP and
the TIP model. In these plots, we consider r as a parameter
and l as a variable, so that different curves correspond to
different values of r.

The data that have not collapsed onto the master curve
correspond to large values of r, where the finiteness of the
system limits the range of l values severely when compared
to rdmin. Consequently, our assumption �1� breaks down be-
cause it has only asymptotical validity.

We like to note here that a second, equivalent scaling
form for N(l ,r) can be written in analogy to Eq. �1�, but with
interchanged roles of l and r,

N� l ,r ��l �̃ f̃ �r/l �̃�. �5�

As above, since l�rdmin, we have �̃�1/dmin . Similarly, by
integration of N(l ,r) with respect to r, we find the number of
sites in the chemical shell l, N(l)�ldl�1. We omit the details
of the computation here, but simply state the result, �̃�dl
�1�1/dmin . Moreover, the two scaling functions are related
by

f �x ��x�dl�1�1/dmin f̃ �x�1/dmin�. �6�

The above formulas can be used to easily switch between the
two representations or to calculate scaling exponents, when
f (x) and f̃ (x�1/dmin) display singular behavior.

B. Functional form of the scaling function

In Figs. 5�a� and 5�b� we also observe that the scaling
function f (x) has a long power-law tail f (x)�x�h. By com-

FIG. 4. Plot of l/rg
dmin , where dmin�d f /dl vs rg both for NIP

(�) and TIP (*), using interpolated data from the measurement of
l and rg vs M. The fractal and topological dimensions are equal to
the values in the preceding figures and yield dmin�1.133�0.005 for
NIP and 1.213�0.005 for TIP.
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parison to the solid line with a slope of �2 we see that the
characteristic exponent is very close to h�2.0�0.02 both
for NIP and TIP. The value of the exponent h�2 is thus
independent of the specific percolation model.

Insight into the reasons why h�2 has been gained in
previous work �11,20� has focused on the conditional prob-
ability �(r�l) �8,21� to find a value of r within a fixed
chemical shell l. The normalization of �(r�l) is such that it
can be interpreted as a regular density in space of sites with
characteristic chemical shell number l, i.e.,

�
0




drrd�1P�r�l ��const. �7�

The constant depends on the spatial dimension but not on l
and is, e.g., equal to 1/2� in 2D. The functional form of
P(r�l) is accepted to be of the scaling form �8�

P�r�l ��
1

ld/dmin
g� r

l1/dmin
� , �8�

where

g�x ��� xg1, x�1,

xg2exp��ax�� , ��
dmin

d min�1
, x�1.

�9�

To find the exponent g1 , Ref. �11� has applied an argument
originally used by de Gennes for self-avoiding walks �10� to
Leath percolation with the result g1�d f�dmin�d . How-
ever, Leath percolation grows one chemical shell after the
other and is thus topologically different from NIP such that it
is not a priori clear that g1 is the same as in NIP. Since TIP’s
d f appears to differ from NIP’s, at least in 2D, the validity of
this equation for TIP would be surprising.

Let us try to find the value of g1 from the scaling relations
for the distributions. If we integrate N(l ,r) over r, we find
the number of sites in shell l,

N� l ���
0




drN� l ,r ��ldl�1. �10�

Since Eqs. �7� and �10� are valid for all l, we obtain that
N(r ,l) and P(r�l) are related by

N� l ,r ��ldl�1rd�1P�r�l �. �11�

We now use the expression �8� for P(r�l) to write

N� l ,r ��ldl�1rd�1l�d/dming� r

l1/dmin
� . �12�

If we rearrange factors of l and r, we can compare this ex-
pression with the scaling form �1� for N(l ,r),

FIG. 5. Data collapse for �a� NIP and �b� TIP of the scaled joint
distribution function N(l ,r)/rd f �1�dmin vs l/rdmin. The data are av-
eraged over 25 000 �NIP� and 50 000 �TIP� systems of M
�40 000. The curve parameter is �right to left� r
�15,25,35,45,65,85,105,145,185,245 �NIP� and r
�7.5,12.5,17.5,22.5,32.5,42.5,57.5,82.5,117.5,167.5,232.5 �TIP�.

FIG. 6. Data collapse for �a� NIP and �b� TIP of the scaled joint
distribution function N(l ,r)/ldl�1�1/dmin vs r/l1/dmin. The data are
averaged over �NIP� 5050 and �TIP� 5750 systems of M
�500 000. The curve parameter is �top to bottom� l
�75,125,175,275,425,625,875,1325,1975,2975,4425 �NIP� and l
�75,125,175,275,425,625,875,1325,1975,2975,4425,6675 �TIP�.
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N� l ,r ��rd�1l�1/dmin�d�d f �dmin�g� r

l1/dmin
� �13�

�rd f �1�dmin� r

l1/dmin
� d�d f �dmin

g� r

l1/dmin
� �14�

�rd f �1�dmin� l

rdmin
� ��1/dmin��d�d f �dmin�

g� � l

rdmin
� �1/dmin� ,

�15�

and find how f (x) must be expressed in terms of g(x):

f �x ��x�d/dmin�1�dlg�x�1/dmin�. �16�

Now we expand this relation for large x such that we can use
the asymptotic forms for both g(x (�1/dmin)) and f (x). One
obtains

x�h�x�d/dmin�1�dlx�g1 /dmin. �17�

Here we read off that the different exponents are not inde-
pendent, but that h and g1 satisfy the equation

h��g1�d �/dmin�1�dl , �18�

or, conversely, expressing g1 in terms of h,

g1��h�1 �dmin�d f�d , �19�

where we have applied the identity dmin�d f /dl . Thus, our
numerical finding that h�2 implies g1�d f�dmin�d , for
both NIP and TIP, supporting the arguments in Ref. �11� for
Leath percolation. Although it is not very surprising that the
formula holds both for NIP and Leath percolation—since
both are conjectured to be in the same universality class—the
possibility that it also holds for TIP suggests a more general
validity.

C. Behavior of moments

Specific moments of the distributions discussed above
have important physical meaning in applications. For in-

stance, if we fix r�0 and consider the average �l(r�0)	,
we obtain the mean chemical length of the paths returning to
the origin, which gives some insight into transport properties
of systems that can be described by NIP or TIP models.
Higher moments of N(l ,r) tell us about the fluctuations that
have to be expected in transport phenomena—say, the distri-
bution of times that it takes water injected at one oil borehole
to reach a second borehole at distance r.

The value h�2 indicates that the distribution of l for
fixed r has a Lorentzian tail. The well-known fact that such a
distribution does not have a well defined average implies
interesting properties for the averages �l(r)	 or, more gener-
ally, for �l(r)q	1/q, where we take the moment q as a positive
real parameter.

Let us consider ensembles of clusters grown up to fixed
span L. Typically, in such clusters, the longest chemical path
has length Ldmin. When we now use the scaling form for
N(r ,l) to compute �l(r)q	, we will extend the integrals to

FIG. 7. Generalized averages �lq(r	10)	1/q of 9100 NIP
(� ,� ,*) and TIP systems (� ,� ,�) plotted vs their linear span L.
Different pairs of curves correspond to different q�0.75,1,1.5
showing convergence �bottom�, nearly logarithmic �center�, and
power-law divergence �top�.

FIG. 8. Scaling plots of ln„�l(r	10)q	1/q…�(1/q)ln(A/q�h�1)
vs (q�h�1/q)lnL for 9100 NIP �a� and TIP �b� clusters of linear
span up to L�2048. Different symbols correspond to different q
�1.5(�),2.0(�),2.5(*),3.5(�),3.5(�). From Eq. �23� we ex-
pect for q
h�1 asymptotically straight lines with slope dmin . For
comparison, the solid lines indicate these values for the respective
case. For TIP, the asymptotic slope appears to be slightly smaller
than the value expected from dmin , which could be due to finite-size
effects. The values of A and h are chosen such that the best possible
collapse results: A�8.0, h�2.0 for NIP, A�8.0, h�2.05 for TIP.
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Ldmin, which introduces effectively a cutoff function multi-
plying N(r ,l),

�l�r �q	��
1

Ldmin

dllqN�r ,l �. �20�

If L is sufficiently large, then the integral will be dominated
by the tail contributions and f (l),l�1 will be close to its
asymptotic form �Al�h, with A being the constant of pro-
portionality. We will concentrate on the case that r is a small
positive constant, say 1. Then, for sufficiently large L the
relation

�lq�1 �	�A�
1

Ldmin

dllql�h �21�

holds. For q�h�1, the integral diverges logarithmically, for
q
h�1 in a power-law fashion, but for q	h�1 the inte-
gral converges to a constant independent of L. In summary,
we obtain for �l(1)q	1/q

�lq�1 �	1/q�� const, q	h�1,

�Adminln�L ��1/q, q�h�1,

A� A

q�h�1 � 1/q

Ldmin�q�h�1/q �, q
h�1.

�22�

Since h�2, we expect that the regular average �l(1)	 for
q�h�1�1 diverges logarithmically. Averages derived
from smaller moments become independent of L and those
for larger moments diverge as powers of L. These predictions
are supported by the simulation as shown in Fig. 7, where we
display �lq(1)	1/q as a function of cluster size for q
�0.75,1,1.5 both for NIP and TIP. The abscissa scale is
logarithmic, so that the two central curves for q�1 should
be linear for large L. We see clearly the convergence for the
moments below q�1 and the divergence for larger mo-
ments.

If we plot the logarithm of the diverging generalized av-
erages ln„�l(1)q	1/q…, we expect asymptotically

ln„�l�1 �q	1/q…�1

q
ln� A

q�h�1 ��dmin

q�h�1

q
lnL .

�23�

Thus, plotting ln„�l(1)q	1/q…�(1/q)ln(A/q�h�1) vs (q�h
�1/q)lnL as an independent variable on the abscissa, the
graph becomes a straight line with slope dmin . Such a plot
constitutes an independent way to determine h and dmin . We
find the value of h by demanding that the graph should be
straight for large L and determine dmin from its slope.

Our data for NIP �Fig. 8�a�� support nicely h�2 and
dmin�1.133 as shown in Fig. 8�a�.

The TIP data �Fig. 8�b��, however, are slightly less con-
vincing. We obtain the best straight line for h�2.05, but h
has only a precision of 0.1. Likewise, the corresponding
asymptotic slope is about 1.18, smaller than the expected
value of dmin�1.213, which is indicated by the straight line
added in the figure.

V. DISCUSSION AND SUMMARY

In this paper we have studied, along with the fractal di-
mension d f , several structural exponents of NIP and TIP,
which are summarized in Table I. We find strong evidence
that NIP and TIP in 2D fall into different universality
classes: we find that d f for the two models differs by more
then about 20 standard deviations. In addition, the shortest
path exponent in TIP is larger than for NIP by about 16
standard deviations, reflecting the additional constraints im-
posed on the topology by the trapped regions in the TIP
interior. Consequently, the chemical dimension of NIP is
larger than that of TIP. However, all measured structural
exponents of NIP are within the error bars equal to those of
regular percolation, thus providing convincing numerical
evidence for the conjecture that NIP and regular percolation
fall into the same universality class.

We have also studied the distribution N(l ,r) of the num-
ber of cluster sites with chemical distance l and Euclidean
distance r from the cluster center. We find a scaling form of
N(r ,l)�rd f �1�dminf (l/rdmin), with the interesting property
that f (x)�x�2 for large x, independent of the model �NIP or
TIP�. The very large exponent of (�2) gives rise to a loga-
rithmic behavior with system size, if average values of l are
calculated as functions of r, more generally all qth-order
moments �lq	 of N(l ,r) will diverge with system size for q
�1 and converge for q	1.
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TABLE I. Summary of the various exponent values in NIP, regular 2D percolation, and TIP.

d f dl dmin h a b

2D NIP 1.899�0.003 1.671�0.006 1.133�0.005 2.00�0.10 0.80�0.15 0.45�0.15
2D percolation 91/48 1.678�0.003 1.130�0.002 �17� 2.0 �11�

2D TIP 1.831�0.003 1.510�0.005 1.213�0.005 2.05�0.10 0.60�0.15 0.70�0.15
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