
Resistance distribution in the hopping percolation model

Yakov M. Strelniker, Shlomo Havlin, Richard Berkovits, and Aviad Frydman
Minerva Center, Jack and Pearl Resnick Institute of Advanced Technology, and Department of Physics, Bar-Ilan University,

52900 Ramat-Gan, Israel
�Received 1 February 2005; published 20 July 2005�

We study the distribution function P��� of the effective resistance � in two- and three-dimensional random
resistor networks of linear size L in the hopping percolation model. In this model each bond has a conductivity
taken from an exponential form ��exp�−�r�, where � is a measure of disorder and r is a random number,
0�r�1. We find that in both the usual strong-disorder regime L /���1 �not sensitive to removal of any single
bond� and the extreme-disorder regime L /���1 �very sensitive to such a removal� the distribution depends
only on L /�� and can be well approximated by a log-normal function with dispersion b�� /L, where b is a
coefficient which depends on the type of lattice, and � is the correlation critical exponent.
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I. INTRODUCTION

The concepts and methods of percolation theory are
widely used to explain many phenomena in physics, classical
as well as quantum �for a review see, e.g., Refs. �1–3��. The
canonical model for studying the transport properties of dis-
ordered systems is percolation on a lattice. Usually it is also
assumed that the conductivity between neighboring lattice
sites may be defined as either finite or zero �i.e., either con-
ducting or insulating� without loss of generality. This model
�which we denote as bond �or site� percolation� has been
extensively studied and is understood quite well. For the de-
scription of the nearest-neighbor hopping in granular materi-
als it is much more natural to define the conductivity be-
tween two neighboring lattice sites �labeled i and j� by �ij
�exp�−rij /r0−
ij /kBT�, where rij is the distance between the
two sites, r0 is the scale over which the wave function out-
side the grain decays, 
ij is the energy difference between
grains, and T is the temperature. Here we neglect the thermal
hopping term �high-temperature regime� and consider only
nearest-neighbor hopping. This behavior may be captured by
a lattice model for which �4–8�

�ij = �0 exp�− �r�ij�� , �1�

where � is a measure of disorder, r�ij� is a random number
taken from uniform distribution in the range �0,1�, and �0 is
a dimension coefficient �4,5�. We shall name this model the
hopping percolation model.

One might expect that such small differences in the for-
mulation of the disorder in the �ij �namely, �ij =0,1 or �ij
=�0 exp�−�r�ij��� will lead to no important difference in the
global conductance properties of these systems. Quite sur-
prisingly, recent experiments on the conductance of granular
material �9� might suggest otherwise. Specifically, the num-
ber of red bonds �which are critical for current� expected in
framework of the traditional percolation theory is propor-
tional to L1/�, where � is the percolation correlation critical
exponent and L is the system size �10�. Thus, for a typical
experimental setup of 109 grains, one expects 102 red bonds.
On the other hand, measurements of transport through Ni
granular ferromagnets indicate a much lower number of red

bonds �typically of order 1� �9�. In a recent paper �5� we have
attributed this difference to the fact that the estimation of the
number of red bonds �L1/�� is based on the bond percolation
model, while for the hopping percolation we expect a transi-
tion to a regime of extreme strong disorder in which a single
red bond governs the behavior of the system. The onset of
this regime scales as to � /L1/�.

It is important to note that in contrast to the traditional
bond �or site� percolation model, in which the system is ei-
ther a metal or an insulator, for the hopping percolation
model the system always conducts some current. Hopping
conductivity �i.e., exponential local resistance — see Eq. �1��
is always associated with strong disorder. As was shown in
Ref. �5�, there are two regimes within this strong disorder: a
regime which is not sensitive to the removal of a single
bond, as expected from the usual percolation theory, termed
the usual strong-disorder regime �11�. While for even stron-
ger disorder a regime which is very sensitive to the removal
of a specific single bond exists, denoted as extreme disorder.
In the extreme-disorder regime a single bond can determine
the transport properties of the entire macroscopic system
�5,9�.

The remainder of this paper is arranged as follows. In Sec.
II we describe our model and the numerical approach. In Sec.
III we present some numerical results, followed by a brief
discussion in Sec. IV.

II. MODEL

We perform large-scale Monte Carlo simulations for cal-
culating transport in these systems. We build a bond-
percolating Miller-Abrahams-like resistor network �see Fig.
1 and Refs. �5,12–14��, but assume the conductivity of each
resistor to have the form given in Eq. �1�. Then solve the
corresponding set of linear Kirchhoff equations and calculate
the total effective resistance �e for two-dimensional �2D� and
three-dimensional �3D� networks �5,12–14�.

We begin by calculating the average effective conductiv-
ity �e. The approximate expression �1,2,4� for the effective
conductivity �e, of a random resistor network �13� with local
conductivities given by Eq. �1�, in 2D is
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�e = �0e−pc�. �2�

In Fig. 2 we show this dependence �in terms of resistivity
�e=1/�e� for both site and bond percolations �see Fig. 1� for
different lattice sizes. In Ref. �6� it was shown that in the
limit �→�, Eq. �2� is exact. It is easy to show that in the
case of a 2D random resistor bond network �for which pc
=0.5�, Eq. �2� follows immediately from the Keller-Dykhne
theorem and is exact for arbitrary � �15�. Similarly this result

can be found in framework of the symmetric self-consistency
effective-medium approximation �EMA� rewritten for a
many-component composite �16�. From Eq. �2� it follows
that the effective conductivity �e depends on � and does not
depend on the system size L. For finite L, Eq. �2� represents
the mean conductivity over all configurations of the disor-
dered system.

Next we study the fluctuations of the resistance, �=1/�,
from the mean value �e=1/�e for individual systems of finite
size L. We perform numerical calculations of the probability
distribution function P��� �i.e., the probability that the total
resistance of the system is �� as well as the variance var���
as a function of L and �. As shown in Ref. �5�, the relative
variance �in contrast to �e� strongly depends on L and � only
through the scaled variable h�L /��. Here � is the critical
exponent of the percolation correlation length �� �p− pc�−�

�in 2D �=4/3�1.33, while in 3D ��0.88 �1–3��. It was
also shown �5� that h describes the transition from strong
disorder �h�1� to extreme disorder �h�1�.

III. RESULTS

Here we present numerical results suggesting that P���
also depends only on L /��. In order to verify and to quantify
this hypothesis, we study numerically P��� for systems of
different sizes L and different disorder �, but with the same
value of h �see also Ref. �17��. In Figs. 3 and 4 we show P���
vs � for the cases of strong and extreme disorder. All data
corresponding to the same parameter h scale according to the
same law �see Figs. 3�c� and 3�g��. Thus, our results suggest
that P��� is a function of both � /�e and h—i.e.,

P��� =
1

�e
f	 �

�e
;h
 . �3�

Here h determines the form of the function and P��� for a
fixed h depends only on � /�e. Figure 3�c� suggests that in the

FIG. 1. �a� A square-bond percolation net of resistors with ran-
dom resistivity given by Eq. �1�, where �ij� denotes the bond be-
tween sites i and j. �b� A site percolating network. The resistivity of
all four resistors within a dashed circle is determined by a single
random number r�ij�, where ij denotes the labeling of the grid point
i , j.

FIG. 2. A semilogarithmic plot of the averaged resistance �e vs
�. In the case of site percolation �pc=0.592 746� the slope of the
curve is close to 0.6, while for the case of bond percolation �pc

=0.5� this slope is equal to 0.5 �cf. Eq. �2��. The system sizes shown
are L=20 �solid circles�, 40 �open squares�, and 100 �open stars�.
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strong disorder, h controls the width or standard deviation of
the rescaled distribution. Since the standard deviation in-
creases when h decreases, we assume that the standard de-
viation 
�b�e /h=b�e�

� /L, where b is a parameter which
depends on the type of lattice. Indeed, when we plot, in Fig.
3�d�, P�� /�e�
 vs ��−�e� /
, a collapse of the two plots

shown in Fig. 3�c� is obtained. The functional form obtained
in Fig. 3�d� suggests that the probability distribution can be
approximated by a Gaussian

P��� � ��2�
�−1 exp�− �� − �e�2/2
2� . �4�

Indeed, the dashed line in Fig. 3�d� represents a good fit to
the Gaussian given by Eq. �4�. However, Eq. �4� cannot ap-
proximate the asymmetric form of P��� at extreme disorder
�see Figs. 3�g� and 3�h��. We suggest, as will be justified
below, that P��� can be approximated �in all regimes of dis-
order� by the log-normal form

P��� �
1

�2���
exp�−

ln2��/�e�
2�2 
 , �5�

where �=
 /�e=b�� /L. In fact, Eq. �5� includes also the
usual strong-disorder case, since in the latter case ln2�� /�e�
��� /�e−1�2 and Eq. �5� reduces to the Gaussian form �4�,
while at extreme disorder ���1� the exponent function in
Eq. �5� tends to 1 and P��� transforms to the powerlike de-
pendence �1/� �see Fig. 4�.

From Eq. �5� it follows that at �→0, the distribution
function P��� reduces to a 
 function:

FIG. 3. �Color online� �a�–�d�
The probability distribution for
the case of usual strong disorder
�h�1�. �a� A typical form of P���
vs � for h=8.1. �b� Similar to �a�,
but shown in log-log scale for L
=300, �=15, h=8.1 ���, L=500,
�=22, h=8.1 ���, L=100, �=10,
h=4.7 �*�, and L=200, �=16.84,
h=4.7 ���. �c� Scaling plots
�eP�� /�e� vs � /�e for the results
shown in �b�. Only the data with
the same value of h scale to a
unique function. �d� Scaling plots
of �eP�� /�e� / �L /��� vs �L /���
��� /�e−1� lead to the collapse of
the data shown in �b� and �c�. The
dashed line in �d� is the Gaussian
distribution �4� with b=0.2. �e�–
�h� Similar to �a�–�d�, but for sys-
tems with extreme disorder �h
�1�: L=50, �=30, h=0.54 ���,
L=30, �=20.4, h=0.54 ���, L
=40, �=40, h=0.3 ���, and L
=20, �=23.78, h=0.3 ���. �h�
Similar process like �d�, which
does not lead to collapse in the
case of extreme disorder. The
lines connecting the points for h
=4.7 in �c� and for h=0.3 in �g�
and �h� are guides to the eye.

FIG. 4. A log-log plot of P��� vs �. By increasing disorder the
log-normal distribution transforms to the power law �−s. �a� L=50,
�=30 �h=0.54�. �b� L=20, �=35 �h=0.18�. Inset: the exponent s
�of the power law �−s� vs h. By increasing disorder �i.e., decreasing
h� the exponent s tends to 1. L=50, �=30 �h=0.54�; L=14, �
=18.19 �h=0.3�; L=20, �=35 �h=0.18�; L=14, �=35 �h=0.12�.
�=4/3.
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lim
�→0

P��� =
1

�
lim
�→0

1
�2��

e−ln��/�e�2/2�2

=
1

�

�ln � − ln �e�

= 
�� − �e� .

Therefore, at �→0 �i.e., �→0 or L→�� the total resis-
tivity of the system is exactly �0epc� and has no size depen-
dence: lim�→0��P���d�=�e.

It should be noted that a log-normal distribution of resis-
tances is found in quantum models of hopping conductivities
�see, e.g., Ref. �18� and references therein�, while here it is
demonstrated for classical exponential disorder �1�. More-
over, our result �5� yields the specific analytical form of
P���, which includes the dependence on � and L for all
regimes of disorder.

In Fig. 5�a� we test Eq. �5� by comparing it to simulation
results. It is shown that the numerical results of the 2D re-
sistance �P�� /�e� / �L /��� scale vs �� /�e�L/��

, as predicted by

Eq. �5� for both strong and extreme disorder. A similar plot is
presented in Fig. 5�b� for a 3D lattice. Although for the 3D
case Eq. �2� is not exact �since Keller-Dykhne theorem exists
only in 2D�, nevertheless the approximated expression �e
��0��e−pc� is known �4,6�, resulting in the distribution law
�5�. Since in Eq. �2� the parameter � appears with the pref-
actor pc, we should expect that pc enters into the parameter �
of Eq. �5� as �=��pc��� /L. Comparing the values b=0.2
observed for the square-bond percolation lattice �pc=0.5�
and b=0.18 for the cubic-site percolation �pc=0.3116�, we
find that �=0.503. The dependence of � on pc is in agree-
ment with result of Ref. �19�. These results strongly support
our proposition that Eq. �5� describes well the distribution in
all ranges of disorder.

The variance var��� can be expressed as ��2�−�e
2, where

��n�=��min

�max�nP���d� and �e= ���. For large enough �, ��n�
=�0

��nP���d�=�0en ln �e+�n2�2�/2; and the relative variance
takes the form

�var����1/2/�e = �e�2
�e�2

− 1��1/2 �6�

�see Ref. �20��. Figure 6 presents numerical results showing
that the relative variance scales as a function of �=b�� /L in
accordance with Eq. �6�.

Next we shall present analytical arguments for the log-
normal distribution �5�. According to the central limit theo-
rem �20�, if the values of ln � are normally distributed, then
the values of � should follow the log-normal distribution.
Assuming ln �=�pc �see Eq. �2�� for all �, the distribution
P��−1 ln �� is simply the distribution of the percolation
threshold ��pc� which is normally distributed �e.g., Ref.
�21��. Indeed, in Fig. 5�c� we show that ���−1 ln���� ap-
proximately follows a normal distribution centered at pc
=0.5. Thus, the distribution of � should be log-normal as in
Eq. �5�.

Using the above assumption ln �=� /�=�pc, it is possible
to evaluate the distribution ��pc� and its standard deviation

pc

. One can write a simple relation ��pc�dpc=���y�dy,
where y=�pc, and get ��pc�=���y�dy /dpc=���y�. There-
fore,

FIG. 5. �Color online� �a� A scaling plot of �P�� /�e� vs
�� /�e�L/��

of the data plotted in Fig. 3 �2D case�. The dashed line
represents the analytical result �5�, with b=0.2 and �=4/3 for nine
systems with L=500, �=22 ���; L=300, �=15 ���; L=200, �
=10 ���; L=100, �=10 �*�; L=50, �=30 ���; L=40, �=40 ���;
L=30, �=20 ���; L=20, �=40 ���; L=20, �=30 ���. �b� Similar
to �a�, but for 3D, with b=0.18 and �=0.88 for three systems with
L=20, �=15 ���; L=26, �=15 ���; L=10, �=6.8 �*�. �h=1.85�.
The dashed line is the analytical result, Eq. �5�. �c� ��pc�
=��ln��� /�� vs pc, where pc=�−1 ln��� for different values of the
ratios L /��: L=100, �=10, h=4.68 �*�; L=60, �=30, h=0.65 ���;
L=40, �=20, h=0.74 ���; L=20, �=30, h=0.22 ���. �d� Scaling
��ln��� /�� / �L /��−1� vs �ln��� /�−0.5��L /��−1� with �=4/3. The
values of the ratios L /�� are the same as in �c�. The dashed line is
the analytical fit, as derived from Eq. �5�.

FIG. 6. �Color online� �a� A semilogarithmic plot of the relative
variance �var����1/2 /�e vs � for various sizes of the system: L
=10,14,20,30,40,50,100,200,300 �from top to bottom�. �b� A
semilogrithmic scaling plot of the same quantity vs �=b�� /L,
where b=0.2, �=4/3. The dashed line represents Eq. �6�.
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��pc� = ����ln �� � ��−1 exp�− �2�pc − p̄c�2/2�2�

= 
pc

−1 exp�− �pc − p̄c�2/2
pc

2 �,

where p̄c is the mean value of the percolation threshold and

pc

=� /� is the standard deviation of ��pc�. This form of
��pc� is supported by our numerical simulations shown in
Figs. 5�c� and 5�d�.

This specific form for 
pc
=b��−1 /L in the hopping perco-

lation model should be compared to 
pc
=L−1/� known for the

bond percolation model �10,21�. This further emphasizes the
differences between the bond percolation model considered
in Ref. �21� and the hopping percolation model considered
here.

IV. SUMMARY

In summary, we find the specific form of the resistance
distribution in the hopping percolation model. For all ranges

of strong disorder � and lattice sizes L, the distribution is
log-normal and depends only on the ratio �� /L, where � is
the correlation exponent for the bond percolation case. As-
suming the relation �=�0exp��pc� for finite systems leads to
a variance of pc, 
pc

=��−1 /L, which is different from 
pc
=L−1/� known for the bond percolation model �21�. Our re-
sults may be relevant to ac conductivity measurements in
such systems. By an appropriate choice of frequency one can
detect regions of size smaller than ��, where a crossover in
behavior from extreme- to usual strong-disorder behavior is
expected.
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