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Detecting scaling in the period dynamics of multimodal signals:
Application to Parkinsonian tremor
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Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spec-
trum of tremor typically has broad peaks at ‘‘harmonic’’ frequencies, much like that seen in other physical
processes. In general, this type of harmonic structure in the frequency domain may be due to two possible
mechanisms: a nonlinear oscillation or a superposition of~multiple! independent modes of oscillation. A broad
peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations
may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the
correlation ~scaling! properties in the period dynamics of multimodal oscillations, in order to distinguish
between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on
our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator
is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by
bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same
scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s
disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not
be simple harmonics, as might be initially assumed.

DOI: 10.1103/PhysRevE.67.031903 PACS number~s!: 87.80.Vt, 02.70.Hm, 89.75.Da
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I. INTRODUCTION

The presence of scaling and long-range correlations
wide variety of physical@1–3#, biological @4–6#, meteoro-
logical @7#, and economic@8,9# systems has recently attracte
much interest. The appearance of scaling laws is gene
associated with the complex, nonequilibrium nature of a s
tem, especially where continuous flow, dissipation of ene
and feedback loops are present@10#. Biological systems of-
ten have these characteristics since they feature complex
vironments with a large number of units interacting loca
and nonlinearly and include multiple, natural pacemakers
well as feedback mechanisms@11#. Such interactions may
lead to nonlinearity and higher harmonics. Recent stud
have focused on identifying long-range temporal correlati
in phenomena that fluctuate with a certain rhythm or peri
icity, but in which the frequency is not constant in time, e.
heartbeat dynamics@12,13#, human gait@14#, and neuron
spiking @15#. In such systems, the semiperiodic signal~not
perfectly periodic! possesses long-range correlations ins
its period dynamics~the time series constructed by the ev
lution of the instantaneous period!. To determine whethe
long-range correlations exist in the nonconstant frequenc
a measured quantity, one first needs to decide what to
sider as the instantaneous period. When dealing with rh
mic signals, one usually encounters a typical frequency
oscillation and therefore the time-dependent period
readily be defined as the time interval between succes
peaks. The period in this manner, however, may be so
times ill defined, e.g., when the oscillation is the product
several typical frequencies, and not just one.

Many patients with Parkinson’s disease exhibit patholo
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cal tremor, a movement disorder that results from the inv
untary fluctuations of a limb. This motion is neither strict
periodic nor is it made up of only one oscillation mode~fre-
quency band!, a property common to many physical an
physiological signals. Tremor can be quantified by meas
ing the acceleration or muscle activity of the hand; both
veal a semiperiodic wave form with more than one typic
frequency~Fig. 1!. There are~at least! two possible explana-
tions for the appearance of a multimodal spectrum in

FIG. 1. Example of hand tremor~a! and muscle activity~c! from
a patient with Parkinson’s disease, and corresponding power sp
~b! and ~d!. The spectra reveal several modes, apparently at
monic frequencies, which may rise from the nonlinear nature of
signal. Another option is that they may actually indicate differe
perhaps independent modes of oscillation. Note that for both h
tremor and muscle activity, the peaks appear at the same freq
cies.
©2003 The American Physical Society03-1
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frequency domain. One is that the oscillation has only o
typical period, but it is of nonlinear nature. In this case, th
is only one statistical ‘‘origin’’ for the period dynamics
Since the signal is semiperiodic, nonsinusoidal, it gener
harmonic structure in the power spectrum. The second is
the oscillation is described by coexisting modes that m
have different statistical origins. The individual modes m
possess statistically independent behavior, as expresse
the period dynamics. The apparent ‘‘harmonic’’ relation b
tween the modes may not be a mere coincidence, but ca
attributed to a certain system that allows only harmo
modes to exist, e.g., a chain of coupled oscillators w
modes at ratios of 1:1, 1:2, or 1:4, for example, or a feedb
loop. Thus, the signal that produces the multimodal harmo
structure may be either a linear combination of oscilla
eigenmodes, or a single nonlinear oscillator.

Previous studies have begun to investigate whether
different frequencies indicate a single nonlinear oscillator
superimposed, multiple biological oscillators@16,17#. For ex-
ample, they may represent multiple tremor mechanisms
may include central oscillations, peripheral feedback loo
and mechanical resonance@18#. To gain insight into the ori-
gins of tremor and the mechanisms responsible for the g
eration of different modes, we would like to quantitative
characterize the time evolution of the fluctuating period
ing scaling analysis~see the Appendix!. Scaling usually ap-
pears in long-term memory processes, such as fractal bro
ian motion, and is associated with 1/f noise. The harmonic o
quasiharmonic signals themselves do not posses sc
properties, however, the time series of their fluctuating p
ods may~e.g., as in heart rate dynamics!. But first, in order to
obtain the period series of tremor signals, we need to se
rate the different oscillation modes. Simple splines that
the signal from noise and other high frequencies canno
used@19#. Therefore, in order to enable scaling analysis
tremor, specifically, and signals consisting of several mod
more generally, it is essential to develop a new method
identifying the period dynamics of individual modes in
multimodal signal. As we show below, subsequent investi
tion of the scaling properties of the decomposed individ
modes will, in turn, provide important evidence regardi
the question of whether the multiple modes are simply h
monics that arise from a single, nonlinear oscillator
whether they are likely to be the result of distinct oscillato

II. METHODS

Two assumptions lie at the basis of our method. The fi
is that independent processes may be responsbile for d
ent correlation~scaling! properties inside the period dynam
ics of individual modes of oscillation. The second is that t
output signal is a superposition of modes, even if those a
from a single nonlinear oscillation. A consequence of the t
assumptions is that the period dynamics can be recov
independently for each of the modes. We propose to dec
pose the multimode signal into its subsignals using a filter
procedure, in order to extract scaling information about
period dynamics of different modes. We hypothesize t
even if the period dynamics of each oscillator possess lo
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range correlations, i.e., no characteristic time scale, its
namical properties may be contained in a finite frequen
band located around the central frequency and not sp
over the entire spectrum. Therefore, if several modes wit
variety of dynamics are present, one can apply a filter in
frequency domain in a bandpass fashion to identify the lo
range temporal correlations inside the fluctuating period,
each mode separately, disregarding any low-frequency c
ponents. Perhaps this idea is counterintuitive; long-te
memory is typically associated with low-frequency contrib
tions. Here, however, we discuss memory in the period
namics and demonstrate that this memory is reflected onl
the vicinity of the peak. Another point to be examined wi
respect to bandpass filtering is the possible mixing of sta
tical properties at different times, which might therefore d
able the time ordering that is cruical for scaling. In the fo
lowing, we demonstrate that this does not occur. When
different filters are applied, similar scaling is observed.

A. Simulation procedure

To test our method, we first simulate a single-mode sig
that has long-range correlations in its period dynamics,
has a constant amplitude. We generate a Gaussian distrib
correlated noise series$h i% @20# and determine the series o
the periods as

Ti5T̄1h i . ~1!

Sinusoids with a fluctuating periodTi are created one af
ter another. As soon as one wave completes its period,
other is created. Thus we have a distribution of sinuso
with different periodsTi . The period dynamics of thes
sinusoids are the same as that of the correlated noise se
$h i%. The analytical representation of such a superposition
delayed finite-duration sinusoids can be written as

y~ t !5(
i 51

N

cosF2p

Ti
S t2(

j 50

i 21

Tj D GuS t2(
j 50

i 21

Tj D
3uS (

j 50

i

Tj2t D , ~2!

whereN is the number of sinusoids in the signaly(t) ~or the
length of the period series$Ti%), and

u~ t !5H 0, t,0

1, t>0.

The Fourier transform of this function can be estimat
using some basic properties. We define the transform pa
the functionh(t) as @21#

h~ t !⇔H~v!5
1

2pE2`

`

h~ t !exp~ ivt !dt. ~3!

Then using ‘‘time shifting’’ and ‘‘modulation’’ we obtain
Eqs.~4! and ~5!, respectively,

h~ t2t0!⇔H~v!exp~ ivt0!, ~4!
3-2
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h~ t !cos~v0t !⇔ 1

2
@H~v2v0!1H~v1v0!#. ~5!

The transform pair of a square pulse with a widthT cen-
tered aroundt50,

uS t1
T

2D uS T

2
2t D⇔ T

2p

sinS vT

2 D
vT

2

. ~6!

It is more convenient to look only at the first term of th
Fourier transform for Eq.~2!, because the second term
simply the complex conjugate of the reflected first ter
Thus, y(t)⇔Y(v)5G(v)1G* (2v). Using Eqs.~4!–~6!,
we obtain

G~v!5
1

2 (
n51

N
Tn

2p

sinF ~v2vn!
Tn

2 G
~v2vn!

Tn

2

exp@ i ~v2vn!tn#,

~7!

where

vn[
2p

Tn
and tn[Tn/21 (

j 50

n21

Tj .

From Eq.~7!, we can see that if$Ti% is a series centere
around a central period, then in the Fourier transform o
values in the vicinity of that period are important; the fun
tion decays without low-frequency contribution as 1/(v
2vn), even if long-range memory is present in the peri
series$Ti%. Such memory is determined only in the amp
tude and phase distribution around the central period, so
signal, to some extent, is bandwidth limited. The power sp
trum of the simulated single-mode oscillator indeed revea
broad peak located around the central frequency~Fig. 2!.
Although the phase is not zero outside the broad peak,
information content carried there is minimal, since the c
responding amplitudes are effectively nil.

B. Robustness of the method

To test whether a filtering procedure can correctly reco
long-range correlations in the period dynamics of the sim
lated signals, we superimpose two single-mode oscillator
construct a double-mode oscillator. This double-mode sig
a prototype for our decomposition trial@Fig. 2~a!#, is then
just the linear combination of the two single-mode signa
f (t)5y1(t)1y2(t), with different central periodsT̄1 andT̄2,
respectively, and different noise series,h1 and h2, charac-
terized by different scaling exponentsa1 anda2. We choose
T̄152T̄2 and denotey1(t) as the first mode andy2(t) as the
second mode, to produce a harmonic structure. To switc
the frequency domain, the Fourier transform of the doub
mode signal is calculated@Fig. 2~b!#. Then a pair of bandpas
filters are applied to the double-mode signal in order to
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compose it into its subsignals~for the first and second mode!.
We use a square pulse filter, which conserves the magni
and phase information inside a chosen bandwidth and
cards all information content outside the band. Afterwar
the inverse Fourier transforms of the results are estimate
switch back to the time domain for peak detection@Figs. 2~c!
and 2~d!#. The period dynamics of the decomposed subs
nals for the two modes is determined from the peak-to-p
intervals ~PPI! series—the intervals between success
maxima. Similiar results were obtained when a Blackm
filter, which decays more slowly, was applied instead of
square pulse filter. This consistency suggests that, at lea
some degree, the method is independent of the filter sh
We chose to use the square pulse filter since its results ca
more intuitively explained.

The correlation properties of the PPI series for bo
modes are then investigated using detrended fluctua
analysis~DFA! @22,23#. DFA calculates the fluctuation func
tion of a time series, which in the case of long-range cor
lations behaves as a power law of time scales@24#, F(n)
;na. When the scaling exponenta is larger, it indicates
stronger correlations in the signal~for more details see the
Appendix!. The fluctuation functions of the PPI series of th
decomposed subsignals are compared with the fluctua
function of the PPI series of the original single-mode sig
to see whether the method is able to restore the correct, o
nal scaling exponent. In Fig. 3, it is apparent that the cor
lation properties of the decomposed first mode signal
identical to those of the original single-mode signal,y1(t), in
the large time scales, but there is some deviation in the sm

FIG. 2. Simulation for the validation of bandpass filtering d
composition of a double-mode signal.~a! The linear combination of
two single-mode signals, with altering periods; one sinusoid ha
cycle centered around 0.25 sec and the second at 0.125 sec. Th
sinusoids may have different scaling exponents describing the
namics of the periods.~b! Power spectrum of the simulated sign
presented in~a!, showing two broad peaks at the correspondi
central frequencies. We decompose the signal into the two mo
with a bandpass filter whose boundaries are indicated by da
lines for the first mode and by dot-dashed lines for the sec
mode. The decomposed subsignals for the first mode and for
second mode are shown in~c! and ~d!, respectively.
3-3
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time scales. The same is true for the decomposed se
mode signal. This effect may originate from the finite ban
width. Thus, although the fluctuations of the period poss
scale-free behavior, the dynamics can be reconstructed
selecting a finite scale of frequencies when analyzing
signal.

We test the robustness of the decomposition method f
variety of input scaling exponents~Fig. 4! for the period
series from Eq.~1! for both the first and second modes. T
scaling exponents for the modes are calculated outside
small scale range to prevent incorrect estimation as indic
by Fig. 3~c!. The decomposition method produces stable
sults regardless of the scaling exponent of the other mo
The sensitivity of the technique to different band limits of t
square pulse filter is also tested~Fig. 5!. The correct scaling
exponents that match the input values are consistently re
ered, as long as the band limits do not approach the oscill
frequencies. The calculated scaling exponent then acts a
almost smooth function with small fluctuations, but no sha
deviations, and closely matches the input value. As the
tering boundaries approach the actual peaks, the scaling
ponent changes drastically and no longer corresponds to
input value.

Therefore, the filtering procedure indeed preserves
correlations and scaling properties of the periods and ca
used to extract the dynamical properties of single-mode
nals from double-~or multi!mode signals.

FIG. 3. Detrended fluctuation analysis~DFA! of the peak-to-
peak intervals~PPI! for the simulation shown in Fig. 2.~a! The PPI
series of the single-mode~input! signal. ~b! The PPI series of the
decomposed first mode signal.~c! Fluctuation functions of the PP
series of ~a! and ~b!, where ‘‘d ’’ indicates DFA results of the
single-mode signal, and ‘‘n ’’ indicates DFA results of the decom
posed first mode signal, obtained by bandpass filtering of
double-mode signal.~d! Successive slopes of the fluctuation fun
tions from~c!. The two curves overlap for almost all window size
indicating that the decomposition restores the correlations in
PPI series of the single-mode signal. Subtle deviations occur
small n, perhaps to finite bandwidth effects. See the Appendix
details on DFA.
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C. Nonlinear oscillation

It is also interesting to see how the method deals wit
nonlinear oscillation with long-range correlations in the p
riod. For this purpose, we generate a different oscillat
function, a pulse train formed as

y~ t !5(
i 51

N

dS t2(
j 50

i 21

Tj D , Ti5T̄1h i , ~8!

where

d~ t !5H 1, t50

0, tÞ0,

to examine the situation where there is only one source
the correlations in a nonlinear signal@Fig. 6~a!#. As in a
perfectly periodic pulse train in time that produces a p
fectly periodic pulse train in the frequency domain, wh
fluctuations are introduced to the period, a similar spectr
is produced but with widened peaks@Fig. 6~b!#. The frequen-
cies at which the broad peaks are located are then int
multiples of the basic one. Applying the decompositi
method to these harmonic modes, we find that their fluct
tion functions perfectly overlap~after normalization by the
harmonic number to fit the time scales@25#!, showing that
the correlation properties of the modes are identical@Fig.
6~c!#. This result can be explained by the fact that it is po
sible to express this nonlinear oscillation as a linear com
nation of modes. Then in our case of long-range correlatio
each of the modes that make up the sum has the same
relation properties as the nonlinear oscillation, since only o
source of correlations exists. This implies that the scaling
the PPI series of harmonic modes originates from the sca

e

e
or
r

FIG. 4. A comparison between the scaling exponents of
peak-to-peak interval series of the original single-mode signal w
the those of the decomposed first mode. Different symbols indic
different input scaling exponents for the period dynamics of
second mode. Note that the decomposition procedure succee
restoring the scaling exponent of the single mode, unrelated to
scaling exponent of the second mode. The same picture appea
the second mode, with the scaling exponent of the single m
restored regardless of the scaling exponent of the first mode.
3-4



te
n
th

b
at
re
e
n
d

a-
on,
d

cal
hair
nt

yo-

for
m

ure-
nly
rm

and

ies
te-
ts

gh
pure
ar-
ent
rs

en
fil-
de,

he

m

a

tra

e
e
bo

cie

d

the

es.
tion

DETECTING SCALING IN THE PERIOD DYNAMICS OF . . . PHYSICAL REVIEW E 67, 031903 ~2003!
of the PPI series of the basic frequency. As can be expec
no additional scaling information exists in the harmonics a
the full scaling properties can be extracted by study of
first mode alone.

Before moving on to demonstrate how this method can
applied, we note that while the simulation results indic
that one can use this method to distinguish between appa
harmonics and distinct oscillators, it will be important in th
future to derive an analytical proof. An analytical derivatio
can help to identify any limitations of the method an
complement the present findings.

FIG. 5. Scaling exponent of the period dynamics of the deco
posed first mode~a! and second mode~b!, as a function of the
filtering boundaries. The double-mode oscillator is filtered by
band, set with a lower limitf min and an upper limitf max. The
double-mode oscillator is comprised of an oscillator with a cen
frequency at 4 Hz and a scaling exponenta50.7 and a second
oscillator with a central frequency at 8 Hz and a scaling expon
a51. For each lower limit and upper limit of the filtering band, th
decomposed subsignal is obtained. The scaling exponents of
oscillators are systematically restored~the flat plain!, as long as the
filtering boundaries are not too close to the oscillator frequen
themselves.
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III. APPLICATION

We apply the technique to physiological data from p
tients with tremor from Parkinson’s disease, a comm
rhythmic movement disorder@26#. Patients were diagnose
according to United Kingdom Brain Bank criteria@27# by
movement disorders experts at Tel-Aviv Sourasky Medi
Center. Subjects were seated comfortably in a reclined c
with arms at rest, while combined registration of moveme
and muscle activity were performed. Surface electrom
graphic ~EMG! recordings@28# were made from forearm
flexor (EMGf lex) and extensor (EMGext) muscles, and
movement was recorded on triaxial accelerometers~ACC!
affixed to the dorsum of each hand. Data were recorded
multiple epochs of 10 min, and a total of 28 time series fro
ten patients were studied. We analyze the ACC meas
ments from the tremor predominant hand, and consider o
the movement in the two directions transverse to the a
axis ~thex axis!, denoted as ACCy and ACCz . The anatomy
and pathophysiology of this movement disorder causes h
tremor to be typically observed in they andz directions, but
not along the axis of the arm.

As already observed in previous studies@29,30#, the main
oscillation in parkinsonian tremor is around the frequenc
of 4–5 Hz. The spectrum also shows peaks at roughly in
ger multiples of that fundamental frequency, for all patien
~Fig. 1!. However, we consider the possibility that althou
the peaks appear at the same frequencies as if they were
harmonics of the basic frequency, rising from the nonline
ity of the signal, they may in fact represent independ
modes of oscillation~i.e., perhaps independent oscillato
give rise to these multiple frequencies!. We analyze the first
two modes, to see if it is possible to distinguish betwe
them, based on their scaling exponents. Accordingly, the
tering band was taken to be 2.00–6.45 Hz for the first mo
and 6.67–10.00 Hz for the second mode~Fig. 7!. To estimate
the error of the applied filter, we calculated the ratio of t

-

l

nt

th

s

FIG. 6. ~a! A pulse train signal with a time-dependent perio
that has scaling properties.~b! The respective power spectrum
shows harmonic modes that are the effect of the nonlinearity of
signal. These modes were then filtered for peak detection.~c! The
fluctuation functions of the period dynamics of the first two mod
The two curves coalesce, indicating that indeed no new informa
is hidden in the harmonics.
3-5
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areas under the filtered spectrum and the total spectrum
found that for the simulated signal, 99.9% of the total area
the power spectrum was located inside the filter boundar
indicating that any errors imposed by the method are q
small and are likely to have a negligible effect.

A. Results

After filtering, the PPI series are derived, and second
der DFA @31# is performed to produce the fluctuation fun
tion which shows consistent long-term scaling at lar
scales. The scaling exponenta is estimated in the range o
time scalesn between 44 and 230@25#, to avoid small scale
errors, as observed in the simulations@Fig. 3~c!#, and finite-
size effects@32#. We find that the periods in tremulous mo
tion and muscle activity do not change randomly, but th
exist long-range correlations. All measurements prod
roughly the same mean value ofa for the two modes~Table
I!.

Interestingly, there is, however, a dissimilarity betwe
the supposedly harmonic modes. This finding raises the
sibility that there are several distinct oscillators, instead o

TABLE I. Mean values and standard deviation of the scal
exponenta for the period dynamics of the first two modes in ha
acceleration and muscle activity patterns in patients with trem
predominant Parkinson’s disease. ACCy and ACCz columns show
the results for the oscillations in they-and z-axis acceleration, re-
spectively, while EMGf lex and EMGext columns show the result
for the flexor and extensor muscles activity, respectively. Note
the mean value ofa is similar in both modes for all measuremen

ACCy ACCz EMGf lex EMGext

First mode 0.860.11 0.8160.12 0.7260.13 0.7560.13
Second mode 0.7960.1 0.7860.08 0.7460.13 0.7660.11

FIG. 7. Decomposition employed on tremor data.~a! A typical
example of acceleration measurements from a patient with Pa
son’s disease.~b! The respective power spectrum displays the t
modes, around 4 Hz and 8 Hz.~c! The first mode signal obtained b
filtering in the range 2.00–6.45 Hz.~d! The second mode signa
obtained by filtering in the range 6.67–10.00 Hz.
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single oscillator and harmonics. The fluctuation functions
different modes from both ACC and EMG data form distin
curves, suggesting that they are not simple harmonics of
fundamental frequency~Fig. 8!, generated by one nonlinea
oscillator ~in contrast with Fig. 6!. Therefore, the different
patterns of the fluctuation function suggest that some tre
mechanism~s! generates more than one independent mod
oscillation that happens to appear in harmonic frequenci

The scaling exponents from ACC and EMG data we
then compared to determine the degree of the associa
between them~using linear correlation coefficient@33#!, both
among the different moving directions—the transve
modes—and among the antagonistic muscle groups~Table
II !. It is notable that although the mean value ofa is similar
for both modes, there are also significant differences betw
the two modes.

B. Discussion

We relate the association between ACCy and ACCz , in
both modes, to mechanical coupling. As a result of the in

r

at

TABLE II. Comparison of the linear correlation coefficients~r!
for a ’s from different measurements in the same mode. The up
triangular above the diagonal in bold shows the correlation coe
cients for the first mode, while the lower triangular below the dia
onal shows the correlation coefficients for the second mode. A g
correlation between the two.* denotes significant linear associa
tion. Note that the two modes are distinct from each other: wher
in the first mode there is no correlation betweena ’s from muscle
activity and the actual movement, in the second mode there is g
correlation between the two.

ACCy ACCz EMGf lex EMGext

ACCy 0.8* 0.14 0.13
ACCz 0.64* 0.12 0.38
EMGf lex 0.87* 0.66* 0.02
EMGext 0.76* 0.54* 0.77*

n-

FIG. 8. ~a! A typical example of an acceleration signal in tremo
and~b! its respective power spectrum.~c! The fluctuation functions
of the period dynamics of the two modes do not overlap, sugges
that they are not simply harmonics generated by the nonlinearit
the signal~in contrast with Fig. 6!.
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action, the oscillations in both directions can become ‘‘mo
locked,’’ and thus become correlated with one another. O
in the second mode, however, there is a strong associa
betweena ’s of the antagonistic muscle groups, and also
tweena ’s of EMG and ACC. In contrast, in the first mode
the association is very weak. It is reasonable to assume
the association between the acceleration and the muscl
tivity originates from the coordination of flexor and extens
muscles. Since movement is determined by the joint acti
of flexor and extensor muscles, if there is a cross correla
between the muscles, there will also be a cross correla
between individual transverse mode accelerations and th
dividual muscle activities.

Evidently, although the mean values ofa are very close in
both modes, they are described by separate sets of beha
Thus, it is likely that there exists more than one mode
oscillation. Central oscillations in the brain may account
the appearance of different modes of oscillation@34# and
synchronized activity of cortical motor areas may determ
the correspondence between the antagonistic muscles@35#.
Further work is needed to determine why apparently in
pendent tremor oscillations occur at integer multiples~e.g.,
1:2 ratio!. It is important to note, however, that this type
behavior is not so uncommon in physiology. For example
primitive neural circuitry, e.g., in the lamprey, coupled,inde-
pendentoscillators have been shown to be responsible
oscillations at integer multiples~i.e., at harmonic frequen
cies!.

IV. SUMMARY

To summarize, we suggest that filtering in the frequen
domain of multimodal signals with long-range memory
the period dynamics can preserve the long-range correla
properties of the period series. The validity of the filteri
method is systematically tested on simulated signals w
two modes of oscillation, with different configurations
generated correlated noise. We change the boundaries o
filtering range and show that the method is robust. T
method can be used to distinguish between two poss
mechanisms that generate an apparent harmonic structu
nonlinear signal and multimodal~independent! oscillations.
The first has only a single statistical origin, while the seco
may have multiple driving processes. Application of th
un

nd
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method to parkinsonian tremor illustrates how our decom
sition technique can be used to analyze the long-term sca
properties of semiperiodic signals with multiple domina
frequencies. Finally, we conclude that scaling analysis of
period dynamics of tremor suggests that the harmonic st
ture of tremor is likely the product of multimodal oscillation
rather than simple harmonics of a nonlinear oscillation.
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APPENDIX: SCALING

The dynamics of a stochastic series$h i% can be explored
through its correlation properties, or in other words, the ti
ordering of the series. When there exist long-range temp
correlations, the autocorrelation functionC(n)[^h ih i 1n&,
and the power spectrumS( f ) both exhibit a scaling behavior
C(n);n2g andS( f ); f 2b, where the scaling exponentsb
andg are related byb512g. Scaling can also be found in
the fluctuation function of the series. DFA@22# is a technique
that has been widely used to calculate the fluctuation fu
tion and avoid spurious detection of correlations that may
artifacts of nonstationarity. The DFA method consists of t
following steps. We first integrate the$h i% series to construc
the profileY(k)5( i 51

k (h i2^h&) where^h& denotes the se
ries average. Next, we divide the integrated signal,Y(k),
into equal nonoverlapping windows of sizen and find the
local trend in each window using a least-squares polynom
fit. The order of the polynomial fit specifies the order of t
DFA. We then calculate the average of the square distan
around the local trend. This procedure is repeated to ob
the root mean square fluctuation functionF(n) for different
window sizesn. A power-law relation,F(n);na, indicates
the presence of scaling in the series. The scaling exponea
is related to the other scaling exponents bya512g/25(b
11)/2 @24#. The valuea50.5 indicates that there are no~or
finite-range! correlations in the data. In contrast, the case
a.0.5 indicates the existence of long-term memory a
scaling in the time series.
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