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Lifetime of the Bond Network and Gel-Like Anomalies in Supercooled Water
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We analyze the distribution of bond lifetimes in simulations of liquid water using a novel bond
definition. We find that the characteristic lifetimes of the bonds and of the “gel”” network itself both in-
crease strongly when temperature is decreased— and even appear to diverge at a temperature well below
the freezing temperature—thereby providing an appealing physical picture of the anomalous behavior of

water in the supercooled region.

PACS numbers: 82.70.Gg, 61.20.Ja

The molecular structure of liquid water, as well as its
dynamic evolution, is an open question. The instantane-
ous structure of the liquid can be described as a “gel”
—a random network of hydrogen bonds (HB’s) of mac-
roscopic extent'®—which is continually restructuring
due to the rapid breaking and reforming of the HB’s on
a picosecond time scale. In recent years an increasing
body of experimental evidence has been accumulating to
suggest power-law behavior in the temperature depen-
dence of both thermodynamic and dynamic properties of
liquid water, which has been interpreted as evidence for
a singularity at an unattainably low value of the temper-
ature (the “Angell temperature” T4 of about —46°C).2
The connection between this apparent singularity and
the structure and dynamics of the HB network that dis-
tinguishes water from other liquids has been difficult to
elucidate. 3¢

Here we present evidence suggesting that the dynamic
anomalies observed in the vicinity of 74 may be related
to a region of power-law behavior of the characteristic
lifetimes of the bonds and the connectivity properties of
the entire bond network or “gel.” Our evidence is based
upon an analysis of the distribution of bond lifetimes
obtained— for five different temperatures— from exten-
sive molecular-dynamics (MD) simulations using a wide-
ly used microscopic model of liquid water, the ST2 inter-
molecular potential.’

The main difficulty in studying bond properties—such
as local and global connectivity, or HB dynamics— using
MD simulations arises from the high degree of arbitrari-
ness in the definition of a bond for systems such as water
that have a continuous range of interaction energies.
Moreover, in the case of water, further arbitrariness
arises from the high directionality of the interaction and
the substantial libration (hindered rotation) which
modulates the time evolution of the interaction. The
most common ways to define a bond— according to the
instantaneous geometric or energetic properties of a pair
of water molecules>%"~cannot strictly be extended to dy-
namics because of this fast librational motion. Only lim-
ited information on the dynamics has been extracted
from the simulations, although such information would
be particularly relevant to the description of the restruct-

uring of the HB gel.

In this work, we use a bond definition recently intro-
duced by Sciortino and Fornili® (SF) who consider the
complete set of all interactions which have a negative in-
teraction energy V;; between molecules i and j, and an
oxygen-oxygen distance r;; less than the maximum dis-
tance® that allows a HB (3.5 A). In the following, we
shall call such interactions “bonds” to make clear that
the interactions considered here are quite distinct from
standard > definitions of a hydrogen bond.

Our configurations are obtained by MD simulations of
216 ST2 particles in a cubic box of edge 18.6 A, with
periodic boundary conditions. The system density is |
g/cm? and the integration time step is 0.001 ps. The
starting configurations used are the final configurations
from an earlier MD simulation by Geiger er al.,'® and
the same computer program is run in order to produce
200 ps of configurations. The configurations from the
last 100 ps are recorded on tape and are analyzed. Five
different temperatures, ranging from 350 to 235 K, are
studied. "'

We first test the plausibility of the SF criterion by
demonstrating that a representative activation energy
can be associated with the bond, and that this activation
energy is related to the bond lifetime in a conventional
Arrhenius fashion (as expected for simple bond-breaking
processes'?). We choose the activation energy to be the
average energy (E;;) associated with the bond, where '?

EijEZV[j+ Z Vik + Z ij. 1)
k=i,j k=i,j

Thus for each bond present in a selected configuration
we record the sequences of values assumed by E;; during
the time interval between the first appearance of the
bond and its first dissociation. To each bond we associ-
ate (i) a lifetime, given by the number of consecutive
configurations in which the same bond is present, and
(ii) a value for (E;;).

Figure 1 is a semilog plot showing the dependence on
bond lifetime 7 of (E;;), averaged over all bonds with the
same lifetime. The observed straight-line behavior sup-
ports an exponential dependence of 7 on (E;;), and the
increase of the slope with temperature is as expected
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FIG. 1. Semilog plot of {E,;) (the average of the recorded
values of E;; during the existence of the bond) as a function of
bond lifetime 7. Each point is the average over all the bonds
with the same lifetime. Only three of the five studied tempera-
tures are reported: T =235 K (4A), T=273 K (x), and
T=350 K (0). Note that the energies shown are the sum of
all the interaction energies of the two molecules sharing the
bond ij.

from the Arrhenius kT factor. The large time interval
(almost two decades) over which such an exponential re-
lationship exists supports the SF criterion and explains
the finding of correlation in the dynamic properties of
bonds connected to the same molecule. !!

We first measure the bond lifetime distribution P(7)
(Fig. 2) by making a histogram of the number of bonds
in a given configuration with lifetime 7. We observe a
remarkably large power-law region in this log-log plot,
with the same exponent (—0.5%0.1) independent of
temperature. This power-law region is followed by a fas-
ter decay, and the range of the power law increases to-
ward larger times when we supercool. This latter behav-
ior, which is typical of scaling for dynamical critical phe-
nomena,'# is consistent with the possibility of a critical
region in ST2 water.

Figure 3 shows the temperature dependence of the
average bond lifetime () calculated from P(z).'’ Since
experimental data are frequently analyzed by making
the assumption of a singularity at T4, we attempt to fit
our data for {(z) by a power-law behavior of the form
(T—T,4) " ° A least-squares fit results in the values
T4=229+5K (=—44+5°C) and ¢=0.7+0.2 (see
inset of Fig. 3), values consistent with experimental
findings.'6 It is possible that the fit of the experimental
data by a power law in T — T4 arises from the tempera-
ture-dependent cutoff to the power-law distribution of
bond lifetimes. In this sense, the claimed absence of a
genuine transition could be related to a limitation in the
maximum value assumed by the cutoff.

1
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FIG. 2. The distribution P(z) of bond lifetimes. Shown are
data for all five temperatures studied, with the top four curves
each shifted by one decade for clarity. Reading from top to

bottom, the curves correspond to 7=235 K (&), T=247 K
(x), T=299 K (@), T=273 K (0), and T=350 K (V).

Next we analyze the effect of bond dynamics on the
connectivity properties of the system, with the aim of ex-
tending the concept of the lifetime of a single bond to the
lifetime of the entire ge/ network. The fraction of bonds
in liquid water is always well beyond the percolation
threshold and almost all the molecules in the system be-
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FIG. 3. Temperature dependence of the average bond life-
time (7) (&) and the average lifetime of the spanning cluster
gl (O) (defined as the time interval after which the fraction of
original bonds still alive becomes equal to the bond-percolation
threshold value, and evaluated by measuring the position of the
maximum in the mean cluster size S). Inset: A Double-log-
arithmic plot of the average bond lifetime () vs |T—T,4],
with T,=229 K; the slope of the least-squares fit is —a
=—0.71.
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long to the same “infinite cluster.”'” Therefore an order
parameter associated with the static instantaneous con-
nectivity cannot be connected to the collective behavior
observed in the supercooled region. We focus instead on
the time interval over which the spanning cluster restruc-
tures itself, i.e., on the lifetime 74 of the entire bond
network or “gel.” To this end, we follow the development
in time of the connectivity properties by analyzing the
properties of the clusters formed by bonds that have ex-
isted without interruption since the start of a given “ob-
servation interval,” and ignoring bonds that are newly
formed during this interval. The standard percolation
functions'*—such as the fraction of sites belonging to
the spanning cluster P and the mean cluster size S
— thus become functions of time.

Figure 4 shows Po(z) for five different tempera-
tures.'® We define 74 as the time at which the initial
cluster ceases to span or, equivalently, to be the position
of the maximum in S(z). Our results, shown in Fig. 3,
have the same qualitative and quantitative behavior as
(1). The two quantities g and (1) are not completely
independent, both being related to the actual distribution
of bond lifetimes. However, the spatial correlation
among the bonds and the topological structure of the
pseudolattice formed by the oxygen position are taken
into account only in the 7y, value. The approach to the
apparent transition is reflected also in an increase of
correlation among bonds, as we found in the progressive
reduction of the mean number of bonds needed to form a
spanning cluster when the system is supercooled.

In summary, from MD simulations using the ST2 po-
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FIG. 4. The fraction P~(z) of molecules belonging to the
spanning cluster. At the beginning of the observation interval,
all the molecules belong to the same cluster; during the interval
we consider only the bonds “still alive” and neglect newly
formed bonds. From left to right, T =350, 299, 273, 247, and
235 K.
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tential, we have found evidence for (a) a power-law de-
cay in the bond-lifetime distribution function P(z) fol-
lowed by a faster decay, (b) a sharp increase as T de-
creases in the average bond lifetime (7, and (c) a simi-
lar temperature dependence of the lifetime of the span-
ning cluster 7g. Our ST2 results may provide a micro-
scopic interpretation for the experimental evidence that
suggests a region of power-law behavior in the dynamic
properties of liquid water. Indeed, the MD calculations
—showing that the characteristic lifetime 7g of the
bond network gives the impression of diverging to
infinity— provide an appealing physical picture of the
anomalous behavior of water in the presently investigat-
ed range of supercooling.
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