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Abstract. Numerical calculations based on Kirchhoff laws are used to calculate the 
resistance of a random mixture of conductors and superconductors on the Sierpinski gasket 
in two dimensions. Using modified finite-size scaling arguments we obtain for the supercon- 
ductivity exponent I= 0.27 iO.03, which is not predicted by any known critical exponent 
relations. Our method is confirmed by re-obtaining the exact known result for the conduc- 
tivity exponent for the problem of a conductor-insulator mixture on the gasket. 

The problem of transport on a random superconducting network (RSN)  has been 
studied theoretically and numerically extensively in the past few years [l-131. The 
conductivity X of such a random mixture of superconductors (with concentration p )  
and conductors (with concentration 1 - p )  is infinite above the percolation threshold 
p c .  Approaching p c  from below, X diverges as 

- I P - P r  P’PC (1) 

where s is universal. This superconductivity exponent s has been of theoretical [ 1-51 
and experimental [ 14-19] interest, due to its important role in transport properties of 
random disordered systems. The exponent s appears in the critical behaviour of the 
dielectric constant [ 14-16], in the absorption coefficient of random metal-insulator 
composites [17], in the conduction of binary metallic mixtures [l,  181, and in the 
viscosity of gels [19]. 

In one dimension one can show the exact result s = 1 [3, 51. In two dimensions, 
an exact duality argument by Straley [ l ]  shows that s is equal to the conductivity 
exponent p of a mixture of conductors and insulators, defined by 

X - 1 P - P C l W  P’Pcf. (2) 

Indeed, numerical results [4] yield s = p = 1.3, or s’= s/ v = 0.977. In three dimensions 
no exact relation between s and p is known. Numerical calculations [4] suggest that 
s = 0.75, or s”= s/ v = 0.85, when using v = 0.88. 

In this work we calculate the exponent s for the Sierpinski gasket in two dimensions, 
in order to gain some more insight about the possible relations between s and other 
critical exponents, either dynamic exponents such as p, or static-geometric exponents 
such as v, the exponent of percolation correlation length. Such relations were proposed 
in the past [2, 3, 61, but none of them seem to be valid for all dimensions [ 5 ,  6, 201. 

The Sierpinski gasket is constructed from an equilateral triangle, subdividing it 
into four smaller triangles and taking out the central triangle. This procedure is iterated 
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ad injnitum (figure l ( a ) ) .  The resulting Sierpinski gasket has a fractal dimension 
given by 2d(=  3, or d r =  In 3/ln 2 = 1.585. 

The attraction of the gasket is that many physical problems defined on it are exactly 
solvable (see, e.g., the recent review by Havlin and Ben-Avraham [21]). Though the 
gasket has non-trivial geometry, it has two properties, self-similarity and Jinite 
ramijcation, which enable an exact renormalisation group approach for many physical 
problems considered on the gasket [21-231. The finite order of ramification of the 
gasket implies that the percolation threshold is p c  = 1, which is a one-dimensional 
property. 

The problem of a random superconducting network (RSN)  on the Sierpinski gasket 
means that each bond is either a superconductor (probability p )  or a conductor 
(probability 1 - p ) .  The Sierpinski gasket was suggested as a model for the backbone 
of percolation cluster at criticality [22]. Thus studying the RSN problem for the gasket 
corresponds to a study of a mixture of conductors and insulators near criticality, where 
some of the conductors (concentration p )  are replaced by superconductors. 

A finite Siperinski gasket of order n, i.e. having length L = 2" and containing 3"+' 
bonds is constructed. The resistivity of each bond is chosen randomly, either zero 
resistivity with probability p (superconductor) or finite constant resistivity r with 
probability 1 - p (conductor). To avoid computational difficulties, the resistivity of 
the superconductors was taken as lo-'', which did not affect the accuracy. 

In order to calculate the end-to-end resistance or conductance of the gasket, the 
traditional method of applying direct Kirchhoff laws is rather difficult, due to the 
complicated structure of the gasket. Therefore, one has to transform the gasket into 
an effective network, passing through triangle-star ( A  + Y )  transformations. A similar 
method was used by Blumenfeld and Aharony [24]. 

Figure 1. The Sierpinski gasket in two dimensions.  ( a )  The initial triangle and  first three 
constructions stages. ( b )  The triangle-star transformation. (c )  The transformation to a n  
effective network. 
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The first step is shown in figure l ( b ) .  Here we convert each basic triangle in the 
gasket to a star, using the following formulae for the new resistances R, as a function 
of the old ones r,:  

R I  = 
r2 r3  

rl  + r2 + r3 

r l  r3 Rz = 
r ,  + r2 + r3 

rl r2 
rl  + r2 + r3 

R3 = 

(3) 

The resultant is a gasket which is entirely built of stars, instead of triangles, as 

Next we replace every three connected stars (nine resistor bonds) by an equivalent 
shown in figure l (c) .  

star of three resistors. This is done using the following formulae (see figure l(c)):  

(R:+ R:)(R:+ R:) 
R:+R:+R:+R:+R:+R: 

X 1 = R i +  

(R:+R:)(R:+ R:) 
R ; +  R:+ R:+ R:+ R:.+ R: 

X 2 =  R:+ (4) 

where superscripts denote the three original triangles. 
This last procedure is repeated iteratively until the entire finite gasket is covered. 

As a final result we get a single star, built of three bonds (resistors) and its resistance 
is equivalent to that of the original gasket. 

The results of such a calculation, namely the resistances x l ,  x 2 ,  x3, were averaged 
over several thousands of samples. The average of these three averages is denoted by 
( p ) ,  and is used in our case as representing the resistance of the gasket. 

Results for the averaged resistance ( p )  as a function of p (the concentration of 
superconductors) for increasing values of system size L = 2" ( n  = 3, . . . , 9 )  are shown 
in figure 2 ( a ) .  For n = 3 ,  4, 5, 6 the results were averaged over 30 000 samples, while 
for n = 7,8,9 convergence was achieved already for 5 000 samples, due to self-averaging 
in these larger systems. 

It is interesting to point out that even for small finite systems, p c  is very close to 
1, which is the precise value for the infinite gasket. Also, for p = 0, the RSN reduces 
to an ordered gasket, with all bonds having equal finite resistivity r. Our numerical 
results in this limit fit exactly to the scaling of resistance with length for this case, 
namely [21-231: - 

p - L i  5 = In (5/3)/ln 2 -0.73 . . . ( 5 )  

where g, the resistance exponent, is defined by this relation. 
The above method can be easily applied to the random resistor network problem 

( R R N )  on the gasket. For this case the bonds have random resistivity, either r = 1 with 
probability p (resistor), or infinite resistivity with probability 1 - p  (insulator). This 
infinite resistivity was actually taken as 10" for computational reasons, in analogy 
with the RSN case. After calculating the three resistances x l  , x 2 ,  x3, as before, we 
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Figure 2. ( a )  RSN. Results for the averaged resistance (on a logarithmic scale) as a function 
of p ,  the concentration of superconductors), for increasing values of system size L = 2” 
( n  = 3 , .  , , , 9 ) .  ( b )  RRN.  Results for the averaged conductance (on a logarithmic scale) as 
a function of p ,  the concentration of resistors), for increasing values of system size L = 2“ 
( n  = 3 , .  . . , 8 ) .  

convert the results into three conductances E , ,  E2,  E3, by taking l / x , ,  l /x2 ,  l / x3 ,  
respectively, and  then average those results over a few thousands of samples to get 
(X,), (E2), (E3) and finally (E). The results are shown in figure 2 ( b ) .  

It is worthwhile emphasising that though the RSN and the R R N  are quite analogous 
[25] ,  one basic difference arises immediately when comparing figure 2 ( a )  with figure 
2( b ) .  In  the RSN, p c  approaches pc  = 1 even for very small finite gaskets, whereas in 
the R R N  the effective percolation threshold for finite size L approaches much more 
slowly to the asymptotic value p c  = 1 for infinite gaskets. The fact that in the RSN both 
components of the random mixture conduct (with different timescale), while in the 
R R N  only one component conducts, has the above asymmetry effect on the percolation 
threshold for finite systems. 

In the following we use a finite-size scaling approach similar to that presented by 
Stauffer [20] ,  in order to extract the value of the critical exponent for the case of 
RSN.  In general, when there are two parameters, the concentration p and the system 
length L, we expect every quantity varying as ( p  -pc lx  to follow the scaling relation 

Q = L-”[(p-p,)L””]. ( 6 )  
Equation ( 6 )  is expected to be valid in the asymptotic regime (large lengths and close 
to p c ) ,  where 2 = x/ v, v is the percolation correlation length exponent, and F ( z )  is a 
scaling function. The argument of this function combines the above two parameters 
in the form 

z = ( p - pc)L’/” ( 7 )  
The form of this combination arises from the definition of the correlation length 
exponent 

L -  ( P  - P J ”  (8) 

( p - p c ) ~ I i y =  constant. ( 9 )  

which implies 
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This definition combines p and L through the exponent v and is valid for most 
properties of percolation. 

In the present case, percolation on the Sierpinski gasket in 2 ~ ,  an exact relation 
between p and L, diferent from the general one, was found by Gefen et a1 [23]. Using 
an exact renormalisation group procedure, they found 

yielding 

( P c  - P ) J i -  n L = constant. 

Therefore, a modification of the scaling variable in equations (6)-(7) is required. The 
difference between equations (9) and (11) implies that one has to replace L”“ by a. Thus the final form of the general scaling relation for the Sierpinski gasket 
becomes 

Q =  L - i F [ ( p c - p ) J i n Z ] .  (12) 

where p c  = 1. 

problem. For this case, the conductance is defined by (2), and (12) is 
To test the validity of this modified finite-size scaling, we apply it first to the R R N  

= L-”F[(l  - - p ) d G T ] .  (13) 

The exponent k was calculated by Gefen et a1 [22], and its value is 6 =In (5/3)/ln 2 = 
0.73. The idea of the finite-size scaling approach, expressed by (13), is that if we plot 
EL+“ as a function of (1 - p ) a ,  with the right value of k,  the results for different 
sizes L should be represented by a single curve F ( z ) ,  in the region p + p c  = 1. 

Indeed, figure 3 verifies that this happens for = 0.73 and close to p c =  1. For 
other close values of I; the curves do not coincide. 

Next we apply this method to the RSN case. In this case the resistance is defined 
through ( l ) ,  and by analogy we expect 

- L-?G[(I - p ) d G T ] .  (14) 

-12 
0.4 0.8 1.2 

-I0 I 
0 

1 1 - P I G  

Figure 3. R R N .  Scaling of (X)LG (on a logarithmic scale) as a function of (1 - p ) a .  A 
single curve in the region p + 1 is obtained with the exact known value I; = 0.73 . . . . 
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Plotting pL+: as a function of (1 - p ) a  (figure 4), the best scaling for p + 1 is 
achieved with the value 

s‘= 0.27 * 0.03. (15)  

This value is not predicted by any of the suggestions for critical exponents relations 

Combining the above result for s’, and the well known result for k,  we get, within 
[2, 3, 5 ,  6, 201. 

the statistical error, 

f+ / i  == 1. (16) 

s + p = d v  (17) 

The combination s + p is discussed by Straley [2]. He proposed the relation 

and argued that both s and p should be given equally important placement in an 
exponent relationship, due to their equal footing in the theory. For example, this 
combination plays an important role in the theory of inhomogeneous conductors similar 
to that of the gap exponent in the theory of critical phenomena. It appears also in 
some of the recent theoretical works on the RSN-RRN problems [3, 8, 11, 131. 

Relation (16) is known to be exact for one dimension [2, 131, where it agrees with 
(17). The common feature of one-dimensional systems and the Sierpinski gasket is 
their percolation threshold p c  = 1, due to their finite order of ramification. Therefore, 
the gasket is regarded in many aspects as a quasi-one-dimensional case [ 13,231. Hence 
we suggest that relation (16) may be another common property of finitely ramified 
systems. This can be supported by the theoretical approach to the RSN in one dimension 
by Leyvraz et a1 [13], which shows the peculiar properties for systems with p c =  1. 

Another interesting question is the form of the scaling function G ( z )  in (14). 
Considering first the R R N  case, the conductivity X decreases when system size L 
increases. This is demonstrated by the factor L-@ in the scaling relation (13), which 
is dominant upon the scaling function F ( z ) .  This function becomes a finite constant 
at z = O  ( p = p c ) ,  and vanishes for z + c o  (L+oo)  [20]. 

But this is not the case for the RSN problem. Our numerical results show that the 
resistance increases with system size L, while the factor L-’ in (14) seems to argue the 

+ 

+ 

- 1 0  1 I 
0 0.2 0.4 0.6 

1 1 - P I K  .< 
Figure 4. R S N .  Scaling of ( p ) L ‘  (on a logarithmic scale) as a function of (1  - p ) a .  
The best scaling (near p = 1) is obtained with s’= 0.27 (10.03). 
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opposite. Hence it is suggested that in this case the scaling function G(z)  is the 
dominant factor in the scaling relation. For z = 0 ( p = p c )  it vanishes, but for p below 
p c ,  its strong effect causes the resultant increase of the resistance. This scaling function 
might have an exponential dependence on some power of z, and its exact form is now 
under research. Anyway, the fact that the scaling function plays here the main role, 
and not L-”, might be one of the reasons for the difficulties in deriving an exact 
analytical expression for the superconductivity exponent for the gasket. 

We acknowledge useful discussions with Meir Danino on calculations of resistance 
on the Sierpinski gasket. 
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