COMMENT

Percolation thresholds on finitely ramified fractals

Haim Taitelbaum \dagger, Shlomo Havlin \dagger, Peter Grassberger \ddagger and Ulrike Moenig \ddagger
† Department of Physics, Bar-Ilan University, Ramat Gan, 52100 Israel
\# Physics Department, University of Wuppertal, Gauss-Strasse 20, D-5600 Wuppertal 1, Federal Republic of Germany

Received 7 August 1989, in final form 28 September 1989

Abstract

Exact renormalisation group recursion relations are used to estimate the effective percolation thresholds for site and bond percolation on finite-generation Sierpinski gaskets, and for bond percolation on branching Koch curves.

The Sierpinski gasket (sG) is a prototype of a finitely ramified fractal [1] which often served as a theoretical 'laboratory' for concepts related to fractals. In particular, Gefen et al [1] were the first to treat percolation on a sG, using an approximate renormalisation group (RG) recursion relation. They found that $p_{\mathrm{c}}=1$, a result which is intuitively plausible given the low connectedness of the sg. More precisely, let us look at finite-generation approximations of a sG, and let us call R_{n} the probability that on an nth generation SG all corners are connected. We then define an effective threshold $p_{\mathrm{c}}^{(n)}$ by requiring $R_{n}\left(p=p_{\mathrm{c}}^{(n)}\right)=c$, with $0<c<1$. In [1] it was found for bond percolation that

$$
\begin{equation*}
p_{c}^{(n)} \approx 1-1 / 2 \sqrt{ } n \quad \text { for } n \rightarrow \infty . \tag{1}
\end{equation*}
$$

The site percolation problem has been studied more recently by Yu and Yao [2], who found $p_{c}^{(n)} \approx 1-1 / n$ by means of heuristic arguments and numerical simulations. Related to these problems are other transport problems on the sG, treated in [3-6].

It is the purpose of this comment to point out that for percolation on a sG one can give the exact RG recursion relations, similar to those given in [3] for the problem of Joule heat distribution on a SG, and in $[5,6]$ for self-avoiding walks and trails.

In addition to the probability R_{n} for percolation from any corner to both others, we need the probability for percolation between two corners, but not between them and the third. We call this S_{n}. Obviously, $1-R_{n}-3 S_{n}$ is the probability that there is no percolation between any pair of corners. Graphically, we represent R_{n} and S_{n} as shown in figure 1.

Figure 1. Probabilities for a finite-generation Sierpinski gasket to percolate: (a) from any corner to any other corners; (b) from corner A to corner B, but not to corner C .

For bond percolation, the RG recursion for R_{n} is shown graphically in figure 2 . Together with the somewhat more complicated recursion for S_{n}, we then obtain the exact relations

$$
\begin{align*}
& R_{n+1}=R_{n}^{3}+6 R_{n}^{2} S_{n}+3 R_{n} S_{n}^{2} \\
& S_{n+1}=\left(R_{n}+S_{n}\right)^{2}-4 R_{n}^{2} S_{n}+S_{n}^{3}-R_{n}^{3} \tag{2}
\end{align*}
$$

We make now an ansatz

$$
\begin{align*}
& R_{n}=1+\alpha / n+\mathrm{O}\left(n^{-3}\right) \\
& S_{n}=\beta / n+\gamma / n^{2}+\mathrm{O}\left(n^{-3}\right) \tag{3}
\end{align*}
$$

with open parameters α, β and γ. Notice that no term $\sim 1 / n^{2}$ appears in the ansatz for R_{n}, as such a term can always be absorbed in the term $\sim 1 / n$ by a translation $n \rightarrow n+$ constant. The recursion relations give the unique solution

$$
\begin{equation*}
\alpha=\frac{3}{4} \quad \beta=-\frac{1}{4} \quad \gamma=-\frac{1}{16} . \tag{4}
\end{equation*}
$$

In order to have non-negative probabilities, we can use this solution only for $n<0$. Level $n=0$ corresponds to the outer length scale. Assume now that the recursions (2) hold only for $n>-N$, i.e. level $n=-N$ corresponds to the inner length scale. At this scale, we have a simple triangle with bond probability p, i.e.

$$
\begin{align*}
& R_{-N}=p^{3}+3 p^{2}(1-p) \\
& S_{-N}=p(1-p)^{2} . \tag{5}
\end{align*}
$$

Comparing (3) and (5) gives then in agreement with [1]

$$
\begin{equation*}
p_{c}^{(N)}=1-1 / 2 \sqrt{ } N+O\left(N^{-1}\right) \quad \text { (bond percolation). } \tag{6}
\end{equation*}
$$

This result is supported by numerical simulations which were performed using a technique described in detail in [4]. The effective percolation threshold was determined according to the condition $R_{n}\left(p=p_{c}^{(n)}\right)=0.95$, where the constant $c=0.95$ was chosen arbitrarily.

Figure 2. Recursion relation for R_{n}, the probability to percolate from any corner to any other.

Figure 3. Recursion relation defining a branching Koch curve.

For site percolation, the recursion relations are somewhat more complicated. A straightforward analysis gives

$$
\begin{align*}
& R_{n+1}=R_{n}^{3} p^{3}+3 R_{n} p^{2}\left((1-p) R_{n}^{2}+2 R_{n} S_{n}+S_{n}^{2}\right) \\
& S_{n+1}=p\left[\left(S_{n}+R_{n}\right)^{2}+p S_{n}^{3}-p(3+p) R_{n}^{2} S_{n}-p(2-p) R_{n}^{3}\right] . \tag{7}
\end{align*}
$$

We were not able to solve this analytically as in the bond percolation case. It is however trivial to iterate (7) numerically, with the initial values for R and S given by (5). From such iterations, we found

$$
\begin{equation*}
p_{c}^{(N)} \approx 1-0.5 / N \quad \text { (site percolation) } \tag{8}
\end{equation*}
$$

which agrees qualitatively but not quantitatively with the result of [2]. We might add that we also performed numerical iterations on (2), thereby verifying (3)-(6).

Finally, we should mention that similar (and indeed simpler) exact recursion relations can be given for many other fractals, including in particular branching Koch curves [7]. In the latter case, one finds in general an exponential convergence of p_{c} towards 1. For instance, for bond percolation on the branching Koch curve shown in figure 3 we get a RG relation for the probability R_{n} of percolation

$$
\begin{equation*}
R_{n+1}=R_{n}^{3}\left(1-R_{n}\right) \tag{9}
\end{equation*}
$$

from which we obtain $p_{\mathrm{c}}^{(N)} \approx 1-$ constant $/ 2^{N}$. Again, this result is found to be in perfect agreement with numerical simulations.

References

[1] Gefen Y, Aharony A, Shapir Y and Mandelbrot B B 1984 J. Phys. A: Math. Gen. 17435
[2] Yu B M and Yao K L 1988 J. Phys. A: Math. Gen. 213269
[3] Roux S and Mitescu C D 1987 Phys. Rev. B 35898
[4] Taitelbaum H and Havlin S 1988 J. Phys. A: Math. Gen. 212265
[5] Ben-Avraham D and Havlin S 1984 Phys. Rev. A 292309
[6] Chang J S and Shapir Y 1988 J. Phys. A: Math. Gen. 21 L903 Zheng D, Lin Z and Tao R 1989 J. Phys. A: Math. Gen. 22 L93
[7] Gefen Y, Aharony A and Mandelbrot B B 1983 J. Phys. A: Math. Gen. 161267

