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The effects of a constant field on the early-time kinetic behavior of theA1B→C reaction-diffusion system
with initially separated reactants are analyzed. This is in order to account for the pressure effect resulting from
the injection of the reactants on both sides of the experimental capillary. The kinetics at early times depends on
the magnitude of the field relative to the reaction rate constant, in a suitable set of units. An approximate
solution is given for the case in which the effect of the reaction is smaller than that of the bias. We show that
the production rate ofC is initially proportional tot1/2 with a crossover to proportionality tot, a behavior
which has been experimentally observed. The converse case, in which the effect of the bias is smaller than that
of the reaction, has been studied numerically, and exhibits effects of bias only in the long-time limit.
@S1063-651X~96!01411-0#
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I. INTRODUCTION

A considerable literature has developed within the last 15
years on the kinetics of chemical reactions in restricted ge-
ometries. Interest in this class of problems is generated by
the fact that restricting the geometry can lead to kinetic equa-
tions differing substantially from those in general use. Initial
theoretical contributions in this area were made by Ovchin-
nikov and Zeldovich@1# and by Toussaint and Wilczek@2#.
A review of recent research directions in this area is to be
found in @3#. Much of the literature devoted to the subject
assumes an initially uniform mixture of reactant species, a
condition which would be difficult to implement in the labo-
ratory. Some time ago Ga´lfi and Rácz considered the kinetics
at long times of a one-dimensional reaction-diffusion system
for the reactionA1B→C in which theA andB species are
initially separated in space rather than being uniformly
mixed @4#. This system has been implemented in the capil-
lary experiments of Koo and Kopelman@5#. The experiments
were based on optical absorbance profile measurements
along the capillary, using a moving system of light source,
filters, slit unit, and a photomultiplier tube as a detector~see
Fig. 1!. Subsequently the theoretical study of this system was
extended so as to examine the dynamical behavior of several
chemically interesting parameters at short times@6#.

Thus far theoretical investigations of the system have
mainly been based on a mean-field diffusion-reaction model
in which the rate of production of the productC has the form

R~x,t !5ka~x,t !b~x,t !. ~1!

In this relationa(x,t) is the local concentration of species
A at positionx at time t, b(x,t) is the analogous concentra-
tion of speciesB, and k is taken to be a constant. In this
framework the equations that govern the reaction kinetics are
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5DA

]2a

]x2
2kab, ~2!

]b

]t
5DB

]2b

]x2
2kab,

whereDA andDB are diffusion constants for speciesA and
B, respectively. The supposition that the species are sepa-
rated att50 is built into the initial conditions, which are

a~x,0!5a0H~x!, b~x,0!5b0@12H~x!#. ~3!

HereH(x) is the Heaviside step function anda0 andb0 are
the initial ~uniform! concentrations of speciesA and B,
respectively. This mean-field description has been argued by
Cornell et al. @7# to be valid above an upper critical
dimension dup52, and thus is suitable for experimental
systems. Results for systems below this critical dimension,
in particular in one dimension, have been obtained by
Cornellet al. @7# and Araujoet al. @8#.

FIG. 1. A view of the experimental system of Koo and Kopel-
man@5#. The top of the figure is a side view of the glass reactor and
the bottom is a top view of the experimental setup.
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Other quantities which can be derived in terms of
R(x,t) include the global production rate ofC defined by
R(t)5*2`

1` R(x,t)dx, the location of the center of the reac-
tion front, xf(t), i.e., the position at which the local reaction
rate is a maximum, and the width of the peak aroundxf(t), a
quantity to be denoted byw(t). This function, essentially a
variance, is defined by

w2~ t !5

E
2`

1`

@x2xf~ t !#
2R~x,t !dx

E
2`

1`

R~x,t !dx

. ~4!

The analysis in@6# indicated that at short times~or, equiva-
lently, smallk) bothR(t) andw(t) are approximately pro-
portional to t1/2. Gálfi and Rácz analyzed the behavior of
these quantities in the asymptotic regime, finding thatR(t)
and w(t) fell off at a rate proportional tot21/2 and t1/6,
respectively.

Some of the predicted dependences on time have been
confirmed experimentally@5#. In particular, the possibly sur-
prising nonmonotonic behavior ofxf(t) has been observed
for a theoretically predicted set of parameters@9#. However,
the initial increase in the global reaction rate has not been
clearly obtained. In Fig. 2 we show experimental data for the
reaction Cr311 Xylenol Orange→ product. These reactants
have been used in a few experimental studies of the short-
time behavior@9,10#, due to the noninstantaneous reaction
~finite reaction constantk) in this case. In the particular data
shown, the initial concentrations are 531025 M for Cr31

and 7.531024 M for Xylenol Orange. Product formation
with time is measured via optical absorption measurements,
using the system described in detail in Ref.@5# ~see Fig. 1!.
In Fig. 2 we plot the spatially integrated absorbance per time
of the product which is proportional to the global production

rateR(t). It can be seen that the initial increase of this quan-
tity consists of two parts, the first is at1/2 behavior, followed
by a sharper slope which tends towards a proportionality to
t. In the present paper we explore a possible effect for inter-
preting these experimental data.

In the capillary experiments as schematized in Fig. 1 the
two chemical species are injected at the two ends of the tube
and pushed towards the center, at which point the reaction-
diffusion process begins. Earlier theoretical analyses of this
experiment are based on the assumption that the movement
of the reacting species is purely diffusive, which is equiva-
lent to there being no residual effects of the initial injection
process. The present analysis is based on an assumption that
the initial pressure plays a continuing role in determining
kinetic behavior. This effect will be modeled in terms of
convective terms added to both of the equations in Eq.~2!,
which leads to the set of equations to be analyzed:
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]t
5DA

]2a

]x2
1vA

]a

]x
2kab,

~5!
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]x2
2vB
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]x
2kab,

in which vA>0 and vB>0 are the ~constant! velocities
caused by the uniform pressures. The initial conditions for
this set of equations are just those shown in Eq.~3!.

Any type of analysis of the reaction-diffusion equations in
Eq. ~5! will depend on the magnitudes ofvA andvB relative
to k. We follow our earlier work in deriving an approximate
solution to Eq.~5! using a perturbation analysis@6# for sys-
tems in whichk,vA ,vB . This is equivalent to studying the
short-time behavior of the system. The case in which the
inequality is reversed proved analytically intractable since
the zeroth order equation is nonlinear. One expects that at
very long times the global reaction rate should primarily be
determined by field effects. However, at very early times the
influence ofvA , for example, will only begin to play a role
in determining kinetic behavior at a time of the order of
(vAAa0b0)21. This time would be within the short-time re-
gion only for k,vA ,vB . Hence in the following exposition
we present an analysis of lowest order effects for this case,
and numerical results for the converse casek.vA ,vB .

II. ANALYSIS

The first step in the perturbation analysis is to convert Eq.
~5! to dimensionless variables. It will be assumed thatDA
andDB are approximately of the same order of magnitude, as
are the pairs (a0 ,b0) and (vA ,vB). The variablesa andb in
Eq. ~5! will be replaced by dimensionless variablesa and
b defined by the transformationsa5a0a andb5b0b. The
two dependent variables, the timet and the spatial variable
x, will be replaced by a dimensionless timet, and a dimen-
sionless distancey which are, respectively, defined by

t5
1

a0b0ADADB

t, x5
1

Aa0b0
y. ~6!

FIG. 2. Experimental results~log-log plot! of the spatially inte-
grated absorbance per time, which is proportional to the global
reaction rateR(t). The crossover fromt1/2 to t behavior is indicated
by the two slopes.
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Finally, we define the dimensionless parameters

D5ADA

DB
, v5

vA
Aa0b0DADB

, «5
k

Aa0b0DADB

~7!

and the ratios

u5
vB
vA

, r5Aa0
b0
. ~8!

The perturbation expansion is based on the assumption that
«!1.

Equation~5! can then be rewritten in terms of these vari-
ables as

]a

]t
5D

]2a

]y2
1v

]a

]y
2

«

r
ab,

~9!
]b

]t
5
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D
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2r«ab,

which are to be solved subject to the initial conditions
a(y,0)5H(y) and b(y,0)512H(y). The functions
a(y,t) andb(y,t) will next be expanded in terms of powers
of « as

a~y,t!5 (
n50

`

an~y,t!«n, b~y,t!5 (
n50

`

bn~y,t!«n.

~10!

We consider only the zeroth order functionsa0 andb0 to see
the dominant effects.

It is readily verified that these can be expressed in terms
of the normal probability integral

F~x!5
1

A2p
E

2`

x

e2u2/2du ~11!

as

a0~y,t!5FS y1vt

A2Dt
D ,

~12!

b0~y,t!5FS ~uvt2y!AD

2t D
so that the lowest order approximation to the global produc-
tion rate is

R0~t!5
«

r E2`

1`

FS y1vt

A2Dt
D FS ~uvt2y!AD

2t D dy. ~13!

When t is fixed a0(y,t) increases as a function ofy and
b0(y,t) decreases as a function ofy. Hence Eq.~13! can be
put into a slightly more transparent form by noting that the
maximum value of the integrand occurs at a point to be
denoted byyf . We next transform the variable of integration
in Eq. ~13! by writing y5yf1rA2t, which converts Eq.
~13! to

R0~t!5
«

r
A2tE

2`

1`

FS bvAt1
r

AD D F~bvAt2rAD !dr,

~14!

in which

b5
AD~11u!

A2~D11!
. ~15!

Hence at very small values of the dimensionless timet one
finds

R0~t!;
«

r
A2tE

2`

1`

FS r

AD D F~2rAD !dr, ~16!

which means that at these times the global reaction rate in-
creases ast1/2 exactly as in the field-free case treated in@6#.
This is to be expected since the bias does not begin to be felt
until times of the order of 1/v.

At longer times when the bias begins to be important@i.e.,
whenvt5O(1)# we can approximate to the integrand in Eq.
~14! by making the crude assumption that it is equal to 1 in
the interval (2bvADt, bvAt/D) and equal to zero other-
wise. The end points of the interval are chosen as the points
at which the arguments of the functions in Eq.~12! are equal
to zero. This simplification leads to the result thatR0(t)
increases approximately linearly in time whenvt5O(1),
having the form

R0~t!;«~11u!vt, ~17!

where the coefficient ofvt is a consequence of our analysis.
This linear increase in time ofR0(t) is not surprising since
the effect of the field must dominate the effect of diffusion in
feeding fresh particles of one of the species into the comple-
mentary region. Because of the dominating effect of the field
only the velocity appears in Eq.~17! while D does not, at
least in the lowest order terms.

A comparison of Eqs.~16! and ~17! indicates that the
crossover time between the diffusive and convective regimes
occurs approximately at a time

t5O~1/v2!. ~18!

Hence, for chemical systems characterized by«!v!1, i.e.,
when the field is small but dominant, we expect to see a
crossover between Eqs.~16! and~17! at time of the order of
v22 as illustrated by the curves in Fig. 3. However, it is
obvious that whenv5O(1)@« the diffusive regime will be
almost unobservable.

The crossover of the production rate fromt1/2 to t ex-
plains very well the experimental data of Fig. 2 which ex-
hibit the same behavior. This permits a better understanding
of the early-time behavior in the capillary experiments.
Moreover, Eq.~18! enables one to extract an estimate for the
bias strength from the crossover time.
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The curves in Fig. 3 were generated by numerically solv-
ing a discretized version of the partial differential equations
using the split-step algorithm@6#. The numerical algorithm
replaces the rates and velocities by event probabilities for the
purpose of deriving a numerical solution. Thus the biasing
field in the continuum picture is modeled in terms of differ-
ent probabilities for moving in the positive or negative direc-
tions. These are denoted byEA andEB , while the reaction
rate is replaced by a finite probability of reaction on contact,
q.

Using the same algorithm, we find that whenvA ,vB,k,
the short-time behavior resembles diffusion while the times
at which the velocity terms become important are greater
than 1/« so that the bias is significant only at long times. At
these times the production rates and the width of the front
become independent of time. This behavior is shown in Fig.
4 for the global reaction rate. As can be seen from the upper
curve forEA5EB51022, the crossover due to the bias starts
at times of orderv21, and the rate becomes constant at times
of orderv22.

III. FIRST CORRECTION TERMS

One can develop approximations toa1 and b1 in the
same spirit. For simplicity of notation we define the function

g0~y,t!5a0~y,t!b0~y,t!

5FS y1vt

A2Dt
D FS ~uvt2y!AD

2t D . ~19!

The equation satisfied bya1 is then found from Eq.~9! to be

]a1

]t
5D

]2a1

]y2
1v

]a1

]y
2g0~y,t!5La12g0~y,t!, ~20!

whereL is the indicated diffusion operator. Equation~20! is
to be solved subject to the initial conditiona1(y,0)50. On
introducing the Green’s function associated withL one finds
thata1(y,t) can be expressed as

a1~y,t!52
1

A4pD
E
0

t dt8

At8
E

2`

1`

g0~y2j,t2t8!

3expH 2
~j1vt8!2

4Dt8 J dj, ~21!

with an analogous formula forb1(y,t) except thatD is to be
replaced byD21.

An approximation toa1(y,t) based on the small value of
t is also readily calculated. The starting point in the calcu-
lation is that at short times the exponential term in Eq.~21!
can be approximated by

1

A4pDt8
expH 2

~j1vt8!2

4Dt8 J ;d~j1vt8!. ~22!

In this approximation Eq.~21! is replaced by

a1~y,t!;E
0

t

g0~y1vt8, t2t8!dt8. ~23!

FIG. 3. Curves of the global reaction rateR(t) generated using
the split-step algorithm described in@6# for the case«!v!1. The
values of the parametersEA ,EB ,q ~which are discrete surrogates
for vA ,vB ,k) are EA5EB51022 ~fixed! and various
q51026,1027,1028. The slope is seen to change from being pro-
portional tot1/2 to being proportional tot at times that are the order
of EA

22 .

FIG. 4. Curves of the global reaction rateR(t) in
the case v!«!1 for q50.1 ~fixed! and various
EA5EB51022,1023,1024,1025. As can be seen, at short times the
behavior is mainly diffusive and independent of the values ofEA

andEB . The asymptotic behavior tends towards a constant.
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As a second step, in order to get a reasonably compact result
we make the further approximation

g0~r,D!5H 1, 2vD<r<uvD

0, otherwise
~24!

which is equivalent to the approximation utilized in finding
the result in Eq.~17!. This allows us to evaluate the integral
in Eq. ~23! exactly,

a1~y,t!;minH uvt2y

~11u!v
H~uvt2y!,tJ

5
uvt2y

~11u!v
H~uvt2y!, ~25!

with a similar result holding forb1(y,t). In this equation
H(z) is the Heaviside step function. Hence, wheny is fixed
the time-dependent parts of botha1(y,t) and b1(y,t) are
essentially proportional tot. The correction term in the ex-
pansion of the global reaction rate,

R~t!5R0~t!1«R1~t!1•••, ~26!

is therefore

R1~t!5E
2`

1`

@a0~j,t!b1~j,t!1a1~j,t!b0~j,t!#dj.

~27!

On again making use of the approximationa0(j,t)
;H(y1vt) we find thatR1(t)}t2 for very small values of
t. This should be contrasted with the result obtained in@6#
which does not include a field. In that case we found that
R1(t)}t3/2 for small t. It would therefore appear that the
field is the dominant factor in determining the short-time
behavior of the global reaction rate.

Similarly the reaction front center, i.e., the position at
which the reaction rate is a maximum, is also determined by
the field, at least in the zeroth order approximation. To see
this we need to maximize the functiong0(y,t) defined in Eq.
~19! as a function ofy. The maximum is seen to occur at
yf }t which contrasts with the behavioryf }t1/2 which is
the result in the absence of the field.

The final parameter to be considered is the width of the
reaction frontw(t) as defined in Eq.~4!. An approximation
to the width is readily calculated taking only the contribution
from R0(j,t) into account. The calculation closely follows
that used to find the global reaction rateR0(t), so we con-
fine ourselves to reporting the results. At short times
w(t)}At and at longer times, i.e., at times of orderv22, the
field dominates and one findsw(t)}t. An illustration of this
behavior is shown in Fig. 5. As can be seen, the width is

independent of the reaction rate constant in times which are
smaller than the order ofk21.

IV. DISCUSSION

The results presented in this paper provide a direction to
interpret experimental results which do not exhibit pure dif-
fusive kinetic behavior in the system with initially separated
reactants. The crossovers in macroscopic dynamic quantities,
in particular the global production rate, have already been
shown to help in determining the microscopic reaction con-
stant. In this work we have shown how crossovers induced
by small bias fields can indicate the existence of such fields
and their magnitude relative to the reaction. In the same
spirit one can try to control such external fields through the
pressure imposed on the reactants on both sides of the cap-
illary. In future work we plan to extend the experimental
tests of the theoretical predictions of this paper, as well as to
examine the possible case in which the small field effect is
not continuous, but rather terminates after some short time.
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FIG. 5. An illustration of the crossover in the behavior of the
width of the reaction frontw(t) from being proportional tot1/2 to
being proportional tot for «!v!1. The parameters are those used
to generate Fig. 3, i.e.,EA5EB51022 and q51026,1027,1028.
The crossover occurs at time of orderEA

22 , and the three curves for
variousq are indistinguishable at times less thanq21.
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