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Abstract

There has been growing interest in the study of L�evy �ights observed in the movements of
biological organisms performing random walks while searching for other organisms. Here, we
approach the problem of what is the best statistical strategy for optimizing the encounter rate
between “searcher” and “target” organisms—either of the same or of di9erent species—in terms
of a limiting generalized searcher–target model (e.g., predator-prey, mating partner, pollinator–
�ower). In this context, we discuss known results showing that for =xed targets an inverse
square density distribution of step lengths can optimize the encounter rate. For moving targets, we
review how the encounter rate depends on whether organisms move in L�evy or Brownian random
walks. We discuss recent =ndings indicating that L�evy walks confer a signi=cant advantage for
increasing encounter rates only when the searcher is larger or moves rapidly relative to the target,
and when the target density is low.
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1. Introduction: the random search problem

An important application of two-species reaction–di9usion processes relates to the
problem of what is the best statistical strategy for a searching organism [1,2] to adopt
in order to =nd randomly located “targets” [3–5]. This application to biological phe-
nomena is important because living organisms need to interact with individuals of other
species (e.g., for obtaining food) or of their own species (e.g., in sexual reproduction).
Biological interactions can be inter-speci=c, the most common being a trophic interac-
tion between a consumer and a consumable, adopting the form of predation, parasite
infection or mutual rewarding (e.g., �owers and pollinators), but also occur between
individuals of the same species, the case of mating being particularly relevant. A null
encounter rate can have a disastrous e9ect on essential biological processes such as
feeding and sexual reproduction, while an optimized encounter rate could in principle
confer signi=cant advantages to the searchers or targets. The general problem of how
to optimize the encounter rate is challenging partially because the searchers typically
have a certain degree of “free will” to move and search according to their choice. On
the other hand, they are subject to physical and biological constraints which restrict
their behavior.
The richness of the problem is also due to the “ignorance” of the searchers con-

cerning the locations of the randomly located targets. However, even if the positions
of all target sites were completely known in advance by a “demon” as resourceful as
Laplace’s, the problem of what sequential order to visit the sites in order to reduce the
energy costs of locomotion is itself rather challenging: the famous “traveling salesman”
optimization problem. The ignorance of the target site locations, however, introduces
yet another level of diNculty and renders the problem unsuited to deterministic search
algorithms that do not use some element of randomness. Indeed, only a statistical
approach to the search problem can deal adequately with the element of ignorance.

2. L�evy vs. Brownian searching

2.1. Fixed targets

In our general approach to the encounter rate problem, we distinguish the two
interacting organisms either as a “searcher” (e.g., predator, forager, parasite, pollinator,
male) or a “target” (e.g., prey, food, female). The searcher “consumes” targets, and we
seek the optimal search strategy to maximize encounter rates. Recently, studies [3,4]
have shown that the optimal strategy for a searcher looking for sparsely and randomly
distributed =xed targets that can be visited any number of times is an inverse square
power-law distribution of �ight lengths, corresponding to L�evy �ight motion [2–4]. In
this case of “non-destructive” searching, the searcher can visit the same target site many
times due to either of two reasons: (i) if the target sites become temporarily depleted,
or (ii) if the forager becomes satiated and leaves the area. In the case of “destructive”
searching, when the target found by the searcher becomes undetectable in subsequent
�ights, it was shown that the optimal strategy is for the searcher e9ectively to move
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along straight lines between =nding targets. Note that in both these cases of destructive
and non-destructive searching, a L�evy strategy leads to a higher encounter rate than
a Brownian strategy. Indeed, L�evy search strategies are experimentally observed [3].
However, not all organisms opt for a L�evy strategy always [3,5]. The question thus
arises as to under which conditions a L�evy search strategy becomes signi@cantly better
than a Brownian strategy.

2.2. Moving targets

Very recently, there has been a study of how the relative advantage of L�evy searching
depends—in a complex (and perhaps hierarchical) manner—on variables such as target
density, the type of target movement and the target-to-searcher size and velocity ratios
r and v. Below we discuss this latest development in greater detail, focusing on the the-
oretically important case of one dimensional (1-D) systems, in which di9usion-induced
density �uctuations away from the mean =eld behavior are more relevant than in the
(computationally more expensive) 2-D and 3-D cases. Another reason for studying the
1-D case is that the bene=ts of L�evy searching—at least for =xed target [3]—are mainly
independent of the number d of spatial dimensions, for reasons that are analogous to
how quantities such as the mean square displacement of Brownian and L�evy random
walks are d-independent. Furthermore, many organisms do actually perform searches
over nearly 1-D space, e.g., =sh species that search in coastal or river ecosystems, and
species that search in grassland–forest interfaces.
The simulated systems consisted of a single searcher and a single moving target

in an interval of size L, under periodic boundary conditions. By varying the system
size, e9ectively the target densities can also be varied. These “organisms” move with
constant scalar velocity, but with random directions and step lengths ‘j chosen from a
generalized L�evy probability density distribution with a power-law tail: P(‘j) ∼ ‘−
j :
For 
¿ 3 the motion is equivalent to Brownian random walks, because the mean
square displacement scales linearly with time, while for 
 = 2 the scaling becomes
quadratic in time. Generally the encounter rate is de=ned as the number of encounters
per unit volume swept. In a 1-D scenario the de=nition has to be adapted such that the
encounter rate is the mean number of encounters per distance swept, which in this case
will be the total distance traveled. This de=nition of the encounter rate is essentially
identical to the de=nition of search eNciency used in Ref. [3]. Model variables are
all dimensionless. There are di9erent combinations of target-to-searcher velocity ratios
v and size ratios r for L�evy (
t = 2) and Brownian (
t = 3) targets. For each of
these scenarios, we can study the encounter rate for the cases in which the searcher
performs L�evy (
s = 2) and Brownian (
s = 3) random walks. To evaluate the best
search behavior, one de=nes � as the ratio between the encounter rates for the L�evy
and the Brownian searchers moving in identical environments and traversing identical
total distances. A value �¿ 1 represents a bene=t for the searcher adopting a L�evy
strategy over a Brownian strategy.
Fig. 1 is a grey-scale plot of the value of � against r and v for L�evy and Brownian

targets. White corresponds to large �¿ 2:5 while black to �6 1. For larger L (i.e.,
lower target densities), L�evy searching becomes better than Brownian for a wider range
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Fig. 1. Grey-scale graph showing � as a function of r and v for (a) Brownian targets and (b) L�evy targets.
Each set of four graphs corresponds to increasing system size L = 25, L = 50, L = 75, and L = 100 from
top-left to bottom-right. The areas in white correspond to the case in which L�evy searching is signi=cantly
advantageous (�¿ 2:5) while black indicates no advantage [5].

of size and velocity ratio combinations. High target densities recover Brownian searcher
strategies as optimal. For Brownian target motion (Fig. 1(a)), the white area expands
diagonally from left-bottom (small r; v) to right-top (large r; v) as system size increases
(following the set of four graphs). In L�evy target motion scenarios (Fig. 1(b)), the
white area expands more vertically. Therefore, size and velocity ratios r and v can
both be considered as equally important in order to de=ne the optimal search strategy
for Brownian targets, in contrast to when searching for L�evy targets.

3. Discussion

A new result with biological implications has thus been uncovered: the qualitative
movement of targets is also important for knowing which search strategy is best. Gen-
erally, it is clear that for Brownian targets, searchers larger and faster than their targets
render L�evy searchers more eNcient than Brownian searchers. However, the contrary
is true for searchers smaller and slower than their targets. L�evy targets e9ectively
“screen” size ratio e9ects, and, in this case, the best type of searching motion mainly
depends on velocity ratios: for searchers faster than their targets, L�evy searching is
optimal; while for searchers slower than their targets, Brownian searching is better.
Since environmental and biological situations in nature are highly variable, it is con-

ceivable that di9erent optimal search strategies should naturally evolve. From Fig. 1
it is clearly seen that L�evy motion does not lead to signi=cantly higher encounter
rates always, except only for scarce, small and slow target scenarios. An important
consequence of this result is that we can expect Brownian motion to have evolved
naturally as one possible optimal search strategy. The optimal type of searching mo-
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tion depends in a complex (and perhaps hierarchical) manner on variables such as
target density, the type of target movement and the size and velocity ratios between
searchers and targets (r; v). As expected, L�evy motion is not bene=cial to the searcher
for small L. This situation corresponds to high target density in the real world, hence
our results are consistent with known results for =xed targets [3] showing that L�evy
searching confers no advantages unless the target density is low. For a wide range of
proposed scenarios (r and v ratios), low target densities enhance the bene=ts of L�evy
searching.
For a given target density, the type of target motion is important in order to choose

the best search strategy (Fig. 1). For Brownian targets, velocity and size ratios between
target and searchers are equally important and have a (more or less) symmetrical e9ect
on the optimal strategy. L�evy motion in targets diminishes what may be called the
“target density e9ect”. Although a lower target density also improves L�evy searching,
this density e9ect is not as dominant when targets move in a super-di9usive manner
[5]. In low density and L�evy target scenarios, Brownian searchers still have acceptable
eNciencies (Fig. 1(b)). The non-relevance of size and the reduction of the “target
density e9ect” for the optimal search strategy when searching for L�evy targets renders
the Brownian search strategy optimal in the speci=c situations in which searchers are
slower than their targets even for low target densities (Fig. 1(b)). Some examples could
be parasitic insects or planktonic searchers.
Relative size also plays an important role in the choice of optimal strategy, being

more importand for Brownian than for L�evy targets. For high values of r the best
searching strategy is mainly dependent on the relative velocity and L, regardless of
the type of terget movement, as can be seen from the similarities of Figs. 1a and 1b
for large r. Prey to predator size ratios are far from being unity in Nature (e.g., in
planktonic organisms [5]). The “e9ective size” of the searcher or target could even be
larger than the actual geometrical diameter or maximum body length. For the searcher,
it can be de=ned as the distance up to which a target (or its wake) enters its in�uential
area, de=ned by di9erent chemical, mechanical or visual types of perception involved
in any searching and detection interaction process, or just the feeding currents or con-
centration gradients generated by predators. The e9ective size of targets could be any
chemical, mechanical or visual wake (or cue) left by preys.
In summary, the faster and the more super-di9usive the target motion, the less

advantageous it is to adopt a L�evy strategy, hence the greater the advantage for
Brownian and slow searchers. For such targets, the most eNcient search strategy is
not to move at all, because the preys will come by themselves! Hence, emerges the
ambushing strategy.
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