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We study the dynamics on fractals generated by multiplicative processes. The fractal’s ele-
ments are the transition rates {w;} in one-dimensional systems. We find a general relation for dy-
namics dw =1—17(1), where d, is the exponent characterizing the mean-square displacement, {x?2)
~rw", and 7(q) characterize the scaling of the gth moment of the fractal elements with its size.
We show that criticality in d,, occurs only when f(a) spectra are discrete.

One of the basic properties of the multiplicative process
is its description by a set of generalized dimensions.! An
alternative description? is the spectrum of scaling ex-
ponents of the fractal f(a). These properties are found >’
in a variety of areas (e.g., chaotic dynamical systems,
fractal growth processes, percolation, turbulence, etc.). A
recent suggestion® was made to give a dynamical meaning
to a fractal by mapping the process of refinement of the
fractal measure to transfer matrix theory of a certain
Ising-spin model. All attempts to connect the fractal ex-
ponents spectrum to the dynamical systems have been car-
ried out for deterministic systems. In this Rapid Com-
munication, we present a relation between the static prop-
erties of the fractal and stochastic motion. We show that
a discrete f(a) spectrum represents a dynamical transi-
tion in the diffusion exponent d, defined by (x 2y Y
where (x?2) is the mean-square displacement of a random
walker. On the other hand, a continuous f(a) spectrum
does not possess criticality in the dynamics. In one-
dimensional (1D) systems, the diffusion exponent d,, can
be related® to the autocorrelation function Po(r) by
Po(t)~t "% and to the conductivity o(w)=(nee?/
ksT)D(—iw)), where the mobility'° is given by

D(a))'(wZ/Z)J:xze el .

These relations demonstrate the importance of criticality
of d,, in physical properties. The main idea of the present
work lies in treating the transition probabilities of the par-
ticle as fractal objects. In particular, we examine two
kinds of systems: hierarchical and multifractal.

Consider the partition function

N g
-3 P
I'(z,q) .-Z'l i (1)

where N is the number of segments with length /; at the
nth iteration in the fractal construction process and p; is

the measure of the segment. It has been shown that if
n— oo, i.e., max(l;) — 0 then I'(1,q) is finite only if

1(g) =qa—f=D,(g—1) , )

where a and f describe the singularity and the effective di-
mension of the gth moment of the measure. In the self-
similar processes discussed here, we take all /; to be equal
and their total number must be the number of segments N
of iteration n, thus, /;=I/=N ~!. We define the measure

A

of a segment p; to be inversely proportional to W;;+,
where W;;+ is the transition rate for a particle to hop
from site 7 to its nearest neighbors. Note that while previ-
ous studies assumed that X; p; is normalized for all itera-
tions, in the present study Y; p; is not necessarily normal-
ized. It can be shown that Eq. (2) is valid for the general
case Y;p;=1. While for X;p;=1 it was shown by
Hentschel and Procaccia! that D, is finite and 7(1) =0, it
can be shown that when X;p;>1, D; diverges and
7(1)5£0 where 7(1) represents the “fractal dimension” of
the transition rates.

What information can one obtain from z(g) and f(a)
spectra regarding the physical properties of the system?
Using the relation, !! valid in the limit ¢ — oo,

1 _ ¢t _ 11
———-— ) —— | 3)
D (x» N izl Wi
where N is the number of distinct sites visited by the walk-
er, we find

t~<x2)N—[l+t(l)] . (4)

Identifying (in 1D) N~(x?"2, we find, asymptotically
(t— ),

dy=1—1(1) . (5)

Therefore, the question of the transition from anoma-
lous to normal diffusion depends only on the existence of a
discontinuity in the derivative of 7(g) and hence on the
discrete points in the f(a) spectrum. In the normal case
where (1/W) finite, ie., 21 1/W;jxcNel~! we find
7(1)=—1and d,, =2.

Since the measure p; of each segment describes the in-
verse of the transition rate we expect to find negative a in
the normal and anomalous slow regime (d,, =2). This
follows since a@min=Inlmin(p;)1/In/, amax =Inlmax(p;)1/
Inl, and W;<1. A transition to the ballistic regime
(d,, <2) occurs when W; > 1; in this case we find positive
a. In the following, we study two examples of systems ex-
hibiting fractal transition probabilities and analyze their
properties.

Consider the interval [0,1] with the following construc-
tion laws: each segment with the measure 1 is divided into
3 segments with the measures 1,R,1 (R >1); and each
segment with the measure R" (n#0) is transformed by
one iteration to R"*!. As noted above, at each iteration
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the length of all segments /; are equal (Fig. 1). We, there-
fore, construct ad infinitum using the above rules, a
hierarchical structure of barriers which can be generated
from an ultrametric tree with coordination number z =3.
One finds for this system that, as n— oo,

In1/R }
Inl/R |

In2 ()

r(q)-min{—l,

Hence, the f(a) spectrum consists of two discrete points:

(1,0), R>2, .
7
fia)=1]o /R | | p<>
1n2
and
2, I<R=<2, ®
dw= 1+11’112i R>2.

This sharp transition in the exPonent was obtained earlier
using a variety of methods.'>!7 The same transition
holds when dealing with transition rates distributed ran-
domly as P(p;) =p,”® where a =1 —In2/InR, as the order
of p; in the 1D chain is irrelevant. '¢!7

We next consider the case where the self similarity is
perfect (see Fig. 2), and construct a fractal by iterating
the process ad infinitum. We start with the interval [0,1]
and use the following construction laws: The segment
with the measure p; =1 is divided at each generation to
1:R:1, and the segment with p; =R" (n=0) is divided into
R" R"*! R™ Using Egs. (1) and (2), one obtains

2(g) = —InQ+R9)/n3 , )
. =1 ‘p2=R .p3=1
T o1=1/3 1=W/3 0 1=V/3
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FIG. 1. The construction of the hierarchical set. Each seg-
ment with the measure p=1 is divided into p;=1, p;+1=R,
pj+2=1, and the segment with p; =R" (n=0) is multiplied by R
to R"*! at any generation. At each stage the lengths are equal.
The measures are distributed at the infinite generation by
P(p;)=p % a=1—In2/InR. Note that the process is not com-
pletely self similar.
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FIG. 2. The construction of the multifractal set. The division
of the set is completely self similar. The measures are distribut-
ed after iteration by P(p;) =2""/(}), P; =R’ (j =0, ... ,n).

and

f—

aln 201‘13 /
InR+a ln3
__2aln3

+ l"[2 TR +aln3 ]/l 3}

Using Eq. (5), we find, in contrast with the hierarchical
case, Eq. (8), no transition,

In(2+R)
In3 ’

which holds for all R>0. The motion is anomalously
slow for R > 1 and is anomalously “ballistic” for R <1,
which corresponds to an effective-field operating on the
particle.

Note that the f-a spectrum is symmetric for R and
R ~! as seen in Fig. 3. The above results, Egs. (9)-(11),
were obtained for the deterministic multifractal structures
(Fig. 2). The distribution of the transition rates in this
structure is of a binomial form

(10€)

d,=1+ an

n
P(p;)=2""7 [1] , (12)
where p; =R’ (j =0, ... ,n) at the nth generation.

Since the sum in Eq. (3) does not depend on the order
of the segments (i.e., transition rates), we conclude that
Eq. (11) holds for a random binomial distribution. In the
continuum limit, one can approximate this distribution by
a Gaussian.

The above rule d,, =1 — 7(1) is asymptotic and valid for
t — oo, When we deal with finite systems or finite times,
we expect to find a crossover from an initial exponent, de-
pending on the initial point of the random walker, to the
asymptotic one. This crossover represents the lacunarity
property of the fractal generated from the transition rates.
One interesting property, however, is an effective different
self-similarity, which the random walker sees when its ini-
tial starting point is exactly in the middle of the interval
[0,1]. This diffusion case is representcd by an eﬂ‘ectlve
subset of transition rates p;=R ~!, po=1, p3=R "~ ! and
hence, t(¢) = —In(2R ~9+1)/In3 and dw-l+ln(2R -1
+1)/ In3. For any finite but large iteration, this initial
point represents the cell with the lowest transition rate,
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FIG. 3. (a) The f(a) spectrum of the multifractal set. In this figure, R =2, and as expected fmax ™1 which is the dimension of the

subset. (b) The spectrum for R=1}.
dw < 2.

approaching zero as n increases. These results were
confirmed numerically to a high degree of accuracy.

To summarize, we extend the study of normalized mea-
sures of segments lying on a fractal set to nonnormalized
measures. We study these cases in which p; >1 which
yields negative values for a. In these systems (1) is
nonzero and represents the Hausdorff dimension of the

The strange behavior (a positive) corresponds to an external ordering force which causes

system. We relate the Hausdorff dimension of the transi-
tion rates 7(1) in 1D systems to the dynamical properties
such as the diffusion exponent.
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